Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Regular Paper | Ausgabe 1/2014

Progress in Artificial Intelligence 1/2014

Undersampled \(K\)-means approach for handling imbalanced distributed data

Zeitschrift:
Progress in Artificial Intelligence > Ausgabe 1/2014
Autoren:
N. Santhosh Kumar, K. Nageswara Rao, A. Govardhan, K. Sudheer Reddy, Ali Mirza Mahmood

Abstract

\(K\)-means is a partitional clustering technique that is well known and widely used for its low computational cost. However, the performance of \(K\)-means algorithm tends to be affected by skewed data distributions, i.e., imbalanced data. They often produce clusters of relatively uniform sizes, even if input data have varied cluster size, which is called the “uniform effect”. In this paper, we analyze the causes of this effect and illustrate that it probably occurs more in the \(K\)-means clustering process. As the minority class decreases in size, the “uniform effect” becomes evident. To prevent the effect of the “uniform effect”, we revisit the well-known \(K\)-means algorithm and provide a general method to properly cluster imbalance distributed data. The proposed algorithm consists of a novel undersampling technique implemented by intelligently removing noisy and weak instances from majority class. We conduct experiments using twelve UCI datasets from various application domains using five algorithms for comparison on eight evaluation metrics. Experimental results show the effectiveness of the proposed clustering algorithm in clustering balanced and imbalanced data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2014

Progress in Artificial Intelligence 1/2014Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise