Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.05.2020

Understanding and Modeling the Social Preferences for Riders in Rideshare Matching

Zeitschrift:
Transportation
Autoren:
Yu Cui, Ramandeep Singh Manjeet Singh Makhija, Roger B. Chen, Qing He, Alireza Khani
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11116-020-10112-0) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Ridesharing is the sharing of trip segments from one place to another among multiple travelers, obviating others’ needs to drive themselves. By having more than one occupant sharing a vehicle, ridesharing aims to reduce personal resources and costs, such as fuel and trip-related costs, and driver stress. The objective of this paper is to model the social preferences of rideshare passengers. We identify challenges and barriers people face in ridesharing with respect to whom they share the ride with and model these social preferences to determine the probability of matching for rideshare demand forecasting. An online survey instrument was designed and distributed among the people residing in the United States to uncover their preferences for ridesharing, in addition to the attributes of potential rideshare passengers. Furthermore, using the survey data, a discrete choice model with latent variables was estimated to uncover the relationship between social preferences and matching. We identified 13 attitudinal dimensions characterizing social preference from the survey responses. These 13 variables were further distilled into four latent variables using factor analysis. Four models were estimated for each latent dimension to predict the probabilities of a person pleasantly experiencing his/her shared rides in social aspects from his/her attributes and preferences. Based on the estimated choice model, we developed a matching index derived from preference probabilities that give a compatibility ratio between riders.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise