Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Health and Technology 3/2021

14.03.2021 | Review Paper

Understanding current states of machine learning approaches in medical informatics: a systematic literature review

verfasst von: Najmul Hasan, Yukun Bao

Erschienen in: Health and Technology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Knowledge mining (KM) tends to deliver the tools and associated components to extract enormous amounts of data for strategic decision-making. Numerous machine learning (ML) techniques have been applied in medical information systems. These can significantly contribute to the decision-making process, such as diagnosis, prediction, and exploring the benefits of clinical care. This study aims to determine insights into the current state of data mining applications employed by ML in the field of medical informatics (MI). We believe that this exploration would lead to many unrevealed answers in predictive modelling in medical informatics. A systematic search was performed in the most influential scientific electronic databases and one specific another database between 2016 to 2020 (April). Research questions are outlined after the researcher has studied previous research done on the subject. We identified 51 related samples out of 1224 searched articles that satisfied our inclusion criteria. There is a significant increasing pattern of ML application in MI. In addition, the most popular algorithm for classification problem is Support Vector Machine (SVM), followed by random forest (RF). In contrast, "Accuracy" and "Specificity" are the most commonly used mechanisms for performance indicators calculation. This systematic literature review provides a new paradigm for the application of ML to MI. By this investigation, the unknown areas of ML on MI were explored.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Vollmer S, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927. Vollmer S, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927.
2.
Zurück zum Zitat Toh TS, Dondelinger F, Wang D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBio Med. 2019;47:607–15. Toh TS, Dondelinger F, Wang D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBio Med. 2019;47:607–15.
3.
Zurück zum Zitat Wang X, et al. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Wang X, et al. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
4.
Zurück zum Zitat Bargshady G, et al. Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert SystAppl. 2020;149:113305. Bargshady G, et al. Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert SystAppl. 2020;149:113305.
5.
Zurück zum Zitat Burke TA, et al. Using machine learning to classify suicide attempt history among youth in medical care settings. J Affect Disord. 2020;268:206–14. Burke TA, et al. Using machine learning to classify suicide attempt history among youth in medical care settings. J Affect Disord. 2020;268:206–14.
6.
Zurück zum Zitat Du X, et al. Predicting in-hospital mortality of patients with febrile neutropenia using machine learning models. Int J Med Informatics. 2020;139:104140. Du X, et al. Predicting in-hospital mortality of patients with febrile neutropenia using machine learning models. Int J Med Informatics. 2020;139:104140.
7.
Zurück zum Zitat Golas SB, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Med Inform DecisMak. 2018;18(1):44. Golas SB, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Med Inform DecisMak. 2018;18(1):44.
8.
Zurück zum Zitat Tate AE, et al. Predicting mental health problems in adolescence using machine learning techniques. PLoS One. 2020;15(4):e0230389. Tate AE, et al. Predicting mental health problems in adolescence using machine learning techniques. PLoS One. 2020;15(4):e0230389.
9.
Zurück zum Zitat Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097–e1000097. Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097–e1000097.
10.
Zurück zum Zitat Miah SJ, Gammack J, Hasan N. Extending the framework for mobile health information systems Research: a content analysis. InfSyst. 2017;69:1–24. Miah SJ, Gammack J, Hasan N. Extending the framework for mobile health information systems Research: a content analysis. InfSyst. 2017;69:1–24.
11.
Zurück zum Zitat Ashraf MM, et al. A Systematic Literature Review of the Application of Information Communication Technology for Visually Impaired People. Int J DisabilManag. 2017;11:e6. Ashraf MM, et al. A Systematic Literature Review of the Application of Information Communication Technology for Visually Impaired People. Int J DisabilManag. 2017;11:e6.
12.
Zurück zum Zitat Behera RK, Bala PK, Dhir A. The emerging role of cognitive computing in healthcare: a systematic literature review. Int J Med Informatics. 2019;129:154–66. Behera RK, Bala PK, Dhir A. The emerging role of cognitive computing in healthcare: a systematic literature review. Int J Med Informatics. 2019;129:154–66.
13.
Zurück zum Zitat Kitchenham B. Procedures for performing systematic reviews. Keele, UK, Keele University. 2004;2004(33):1–26. Kitchenham B. Procedures for performing systematic reviews. Keele, UK, Keele University. 2004;2004(33):1–26.
14.
Zurück zum Zitat Zhao R, et al. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. IEEE J Biomed Health Inform. 2020;24(4):1104–13. Zhao R, et al. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. IEEE J Biomed Health Inform. 2020;24(4):1104–13.
15.
Zurück zum Zitat Wang Y, et al. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. J Biomed Inform. 2020;102:103364. Wang Y, et al. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. J Biomed Inform. 2020;102:103364.
16.
Zurück zum Zitat Thorsen-Meyer H-C, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health. 2020;2(4):e179–91. Thorsen-Meyer H-C, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health. 2020;2(4):e179–91.
17.
Zurück zum Zitat Tang C, et al. A novel machine learning technique for computer-aided diagnosis. Eng Appl Artif Intell. 2020;92:103627. Tang C, et al. A novel machine learning technique for computer-aided diagnosis. Eng Appl Artif Intell. 2020;92:103627.
18.
Zurück zum Zitat Qin J, et al. A Machine Learning Methodology for Diagnosing Chronic Kidney Disease. IEEE Access. 2020;8:20991–1002. Qin J, et al. A Machine Learning Methodology for Diagnosing Chronic Kidney Disease. IEEE Access. 2020;8:20991–1002.
19.
Zurück zum Zitat Perveen S, et al. Handling Irregularly Sampled Longitudinal Data and Prognostic Modeling of Diabetes Using Machine Learning Technique. IEEE Access. 2020;8:21875–85. Perveen S, et al. Handling Irregularly Sampled Longitudinal Data and Prognostic Modeling of Diabetes Using Machine Learning Technique. IEEE Access. 2020;8:21875–85.
20.
Zurück zum Zitat Morel D, et al. Predicting Hospital Readmission in Patients with Mental or Substance Use Disorders: A Machine Learning Approach. Int J Med Inform 2020:104136. Morel D, et al. Predicting Hospital Readmission in Patients with Mental or Substance Use Disorders: A Machine Learning Approach. Int J Med Inform 2020:104136.
21.
Zurück zum Zitat Meng Y, et al. A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data. IEEE J Biomed Health Inform. 2020;24(3):878–84. Meng Y, et al. A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data. IEEE J Biomed Health Inform. 2020;24(3):878–84.
22.
Zurück zum Zitat Lin, G.M., et al., Machine Learning Based Suicide Prediction for Military Personnel . IEEE J Biomed Health Inform, 2020. Lin, G.M., et al., Machine Learning Based Suicide Prediction for Military Personnel . IEEE J Biomed Health Inform, 2020.
23.
Zurück zum Zitat Li, H., et al., A semi-automated annotation algorithm based on weakly supervised learning for medical images. Biocybernetics and Biomedical Engineering, 2020. Li, H., et al., A semi-automated annotation algorithm based on weakly supervised learning for medical images. Biocybernetics and Biomedical Engineering, 2020.
24.
Zurück zum Zitat Kuo Y-H, et al. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department. Int J Med Informatics. 2020;139:104143. Kuo Y-H, et al. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department. Int J Med Informatics. 2020;139:104143.
25.
Zurück zum Zitat Fernandes M, et al. risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2020;15(4):e0230876. Fernandes M, et al. risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2020;15(4):e0230876.
26.
Zurück zum Zitat Fernandes M, et al. Predicting Intensive Care Unit admission among patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2020;15(3):e0229331. Fernandes M, et al. Predicting Intensive Care Unit admission among patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2020;15(3):e0229331.
27.
Zurück zum Zitat Fabacher T, et al. Machine learning application for incident prostate adenocarcinomas automatic registration in a French regional regional cancer registry. Int J Med Informatics. 2020;139:104139. Fabacher T, et al. Machine learning application for incident prostate adenocarcinomas automatic registration in a French regional regional cancer registry. Int J Med Informatics. 2020;139:104139.
28.
Zurück zum Zitat Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak. 2020;20(1):16. Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak. 2020;20(1):16.
29.
Zurück zum Zitat Alabi RO, et al. comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int J Med Informatics. 2020;136:104068. Alabi RO, et al. comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int J Med Informatics. 2020;136:104068.
30.
Zurück zum Zitat Zhang J, et al. Feature-weighted survival learning machine for COPD failure prediction. Artif Intell Med. 2019;96:68–79. Zhang J, et al. Feature-weighted survival learning machine for COPD failure prediction. Artif Intell Med. 2019;96:68–79.
31.
Zurück zum Zitat Wu C-C, et al. prediction of fatty liver disease using machine learning algorithms. Comput Methods Programs Biomed. 2019;170:23–9. Wu C-C, et al. prediction of fatty liver disease using machine learning algorithms. Comput Methods Programs Biomed. 2019;170:23–9.
32.
Zurück zum Zitat Tseng Y-J, et al. Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int J Med Informatics. 2019;128:79–86. Tseng Y-J, et al. Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int J Med Informatics. 2019;128:79–86.
33.
Zurück zum Zitat Tschandl P, et al. comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47. Tschandl P, et al. comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47.
34.
Zurück zum Zitat Stevens E, et al. identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Int J Med Informatics. 2019;129:29–36. Stevens E, et al. identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Int J Med Informatics. 2019;129:29–36.
35.
Zurück zum Zitat Stamate D, et al. Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches. Schizophr Res. 2019;209:156–63. Stamate D, et al. Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches. Schizophr Res. 2019;209:156–63.
36.
Zurück zum Zitat Ren T, et al. study on the improved fuzzy clustering algorithm and its application in brain image segmentation. Appl Soft Comput. 2019;81:105503. Ren T, et al. study on the improved fuzzy clustering algorithm and its application in brain image segmentation. Appl Soft Comput. 2019;81:105503.
37.
Zurück zum Zitat Reamaroon N, et al. Accounting for Label Uncertainty in Machine Learning for Detection of Acute Respiratory Distress Syndrome. IEEE J Biomed Health Inform. 2019;23(1):407–15. Reamaroon N, et al. Accounting for Label Uncertainty in Machine Learning for Detection of Acute Respiratory Distress Syndrome. IEEE J Biomed Health Inform. 2019;23(1):407–15.
38.
Zurück zum Zitat Nayak DR, et al. A hybrid regularized extreme learning machine for automated detection of pathological brain. Biocybernetics and Biomedical Engineering. 2019;39(3):880–92. Nayak DR, et al. A hybrid regularized extreme learning machine for automated detection of pathological brain. Biocybernetics and Biomedical Engineering. 2019;39(3):880–92.
39.
Zurück zum Zitat Liu T, Fan W, Wu C. A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artif Intell Med. 2019;101:101723. Liu T, Fan W, Wu C. A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artif Intell Med. 2019;101:101723.
40.
Zurück zum Zitat Liu L, et al. Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery. Int J Med Informatics. 2019;129:234–41. Liu L, et al. Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery. Int J Med Informatics. 2019;129:234–41.
41.
Zurück zum Zitat Lin WC, et al. Predicting Wait Times in Pediatric Ophthalmology Outpatient Clinic Using Machine Learning. AMIA Annu Symp Proc. 2019;2019:1121–8. Lin WC, et al. Predicting Wait Times in Pediatric Ophthalmology Outpatient Clinic Using Machine Learning. AMIA Annu Symp Proc. 2019;2019:1121–8.
42.
Zurück zum Zitat Lin P-C, et al. A machine learning approach for predicting urine output after fluid administration. Comput Methods Programs Biomed. 2019;177:155–9. Lin P-C, et al. A machine learning approach for predicting urine output after fluid administration. Comput Methods Programs Biomed. 2019;177:155–9.
43.
Zurück zum Zitat Jollans L, et al. Quantifying performance of machine learning methods for neuroimaging data. Neuroimage. 2019;199:351–65. Jollans L, et al. Quantifying performance of machine learning methods for neuroimaging data. Neuroimage. 2019;199:351–65.
44.
Zurück zum Zitat Huang L, et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019;99:103291. Huang L, et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019;99:103291.
45.
Zurück zum Zitat da Silva DA, et al. Predicting the occurrence of surgical site infections using text mining and machine learning. PLoS One. 2019;14(12):e0226272. da Silva DA, et al. Predicting the occurrence of surgical site infections using text mining and machine learning. PLoS One. 2019;14(12):e0226272.
46.
Zurück zum Zitat Barman RK, et al. identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinformatics. 2019;20(1):736. Barman RK, et al. identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinformatics. 2019;20(1):736.
47.
Zurück zum Zitat Almeida JS, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recogn Lett. 2019;125:55–62. Almeida JS, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recogn Lett. 2019;125:55–62.
48.
Zurück zum Zitat Xue Y, et al. Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach. J Biomed Inform. 2018;86:143–8. Xue Y, et al. Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach. J Biomed Inform. 2018;86:143–8.
49.
Zurück zum Zitat Wang F, et al. Intradialytic blood pressure pattern recognition based on density peak clustering. J Biomed Inform. 2018;83:33–9. Wang F, et al. Intradialytic blood pressure pattern recognition based on density peak clustering. J Biomed Inform. 2018;83:33–9.
50.
Zurück zum Zitat Lopez C, et al. An unsupervised machine learning method for discovering patient clusters based on genetic signatures. J Biomed Inform. 2018;85:30–9. Lopez C, et al. An unsupervised machine learning method for discovering patient clusters based on genetic signatures. J Biomed Inform. 2018;85:30–9.
51.
Zurück zum Zitat Lin W-Y, et al. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int J Med Informatics. 2018;111:159–64. Lin W-Y, et al. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int J Med Informatics. 2018;111:159–64.
52.
Zurück zum Zitat Kaur H, Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl Comput Informa. 2018. Kaur H, Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl Comput Informa. 2018.
53.
Zurück zum Zitat Hashem S, et al. Comparison of Machine Learning Approaches for Prediction of Advanced Liver Fibrosis in Chronic Hepatitis C Patients. IEEE/ACM Trans Comput Biol Bioinf. 2018;15(3):861–8. Hashem S, et al. Comparison of Machine Learning Approaches for Prediction of Advanced Liver Fibrosis in Chronic Hepatitis C Patients. IEEE/ACM Trans Comput Biol Bioinf. 2018;15(3):861–8.
54.
Zurück zum Zitat Zheng T, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Informatics. 2017;97:120–7. Zheng T, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Informatics. 2017;97:120–7.
55.
Zurück zum Zitat Lynch CM, et al. prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Informatics. 2017;108:1–8. Lynch CM, et al. prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Informatics. 2017;108:1–8.
56.
Zurück zum Zitat Garcia-Chimeno Y, et al. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data. BMC Med Inform Decis Mak. 2017;17(1):38. Garcia-Chimeno Y, et al. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data. BMC Med Inform Decis Mak. 2017;17(1):38.
57.
Zurück zum Zitat Cronin RM, et al. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Int J Med Informatics. 2017;105:110–20. Cronin RM, et al. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Int J Med Informatics. 2017;105:110–20.
58.
Zurück zum Zitat Monsalve-Torra A, et al. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62:195–201. Monsalve-Torra A, et al. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62:195–201.
59.
Zurück zum Zitat Hasan M, et al. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories. J Biomed Inform. 2016;62:21–31. Hasan M, et al. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories. J Biomed Inform. 2016;62:21–31.
60.
Zurück zum Zitat Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3. Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3.
61.
Zurück zum Zitat Waring J, Lindvall C, Umeton R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104:101822. Waring J, Lindvall C, Umeton R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104:101822.
62.
Zurück zum Zitat Mehta N, Pandit A, Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019;100:103311. Mehta N, Pandit A, Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019;100:103311.
63.
Zurück zum Zitat Tuba E, et al. Classification and Feature Selection Method for Medical Datasets by Brain Storm Optimization Algorithm and Support Vector Machine. Procedia Computer Science. 2019;162:307–15. Tuba E, et al. Classification and Feature Selection Method for Medical Datasets by Brain Storm Optimization Algorithm and Support Vector Machine. Procedia Computer Science. 2019;162:307–15.
64.
Zurück zum Zitat Salmeron JL, et al. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing. 2017;232:104–12. Salmeron JL, et al. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing. 2017;232:104–12.
65.
Zurück zum Zitat Dieste O, Griman A, Juristo N. Developing search strategies for detecting rel- evant experiments. Empir Softw Eng. 2009;14(5):513–39. Dieste O, Griman A, Juristo N. Developing search strategies for detecting rel- evant experiments. Empir Softw Eng. 2009;14(5):513–39.
66.
Zurück zum Zitat Porter AL, Youtie J, Shapira P, Schoeneck DJ. Refining search terms for nan- otechnology. J Nanopart Res. 2008;10(5):715–28. Porter AL, Youtie J, Shapira P, Schoeneck DJ. Refining search terms for nan- otechnology. J Nanopart Res. 2008;10(5):715–28.
69.
Zurück zum Zitat Kadi I, Idri A, Fernandez-Aleman JL. Knowledge discovery in cardiology: A systematic literature review. Int J Med Informatics. 2017;97(1):12–32. Kadi I, Idri A, Fernandez-Aleman JL. Knowledge discovery in cardiology: A systematic literature review. Int J Med Informatics. 2017;97(1):12–32.
72.
Zurück zum Zitat Holzinger A, Carrington A, Müller H. Measuring the quality of explanations: the system causability scale (SCS). KI-KünstlicheIntelligenz. 2020;21:1–6. Holzinger A, Carrington A, Müller H. Measuring the quality of explanations: the system causability scale (SCS). KI-KünstlicheIntelligenz. 2020;21:1–6.
73.
Zurück zum Zitat Holzinger A. Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. The IEEE intelligent informatics bulletin. 2014;15(1):6–14. Holzinger A. Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. The IEEE intelligent informatics bulletin. 2014;15(1):6–14.
74.
Zurück zum Zitat Holzinger A. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics. 2016;3(2):119–31. Holzinger A. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics. 2016;3(2):119–31.
Metadaten
Titel
Understanding current states of machine learning approaches in medical informatics: a systematic literature review
verfasst von
Najmul Hasan
Yukun Bao
Publikationsdatum
14.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Health and Technology / Ausgabe 3/2021
Print ISSN: 2190-7188
Elektronische ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-021-00538-6

Weitere Artikel der Ausgabe 3/2021

Health and Technology 3/2021 Zur Ausgabe

Premium Partner