Skip to main content

2022 | OriginalPaper | Buchkapitel

2. Understanding New Age of Intelligent Video Surveillance and Deeper Analysis on Deep Learning Techniques for Object Tracking

verfasst von : Preeti Nagrath, Narina Thakur, Rachna Jain, Dharmender Saini, Nitika Sharma, Jude Hemanth

Erschienen in: IoT for Sustainable Smart Cities and Society

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surveillance is an imminent part of a smart city model. The persistent possibility of terrorist attacks at public and secured locations raises the need for powerful monitoring systems with subsystems for embedded object tracking. Object tracking is one of machine vision’s basic challenges and has been actively researched for decades. Object tracking is a process to locate a moving object over time across a series of video frames. Object tracking powered with the Internet of Things (IoT) technology provides a broad range of applications such as smart camera surveillance, traffic video surveillance, event prediction and identification, motion detection, human-computer interaction, and perception of human behavior. Real-time visual tracking requires high-response time sensors, tracker speed performance, and large storage requirements. Researchers have ascertained and acknowledged that there is a significant change in the efficacy of drone-based surveillance systems towards object tracking with the inception of the deep learning technologies. Several tracking approaches and models have been proposed by researchers in the area of object tracking and have experienced major improvements with advancement in methods, but object tracking is still considered to be a hard problem to solve. This chapter explains state-of-the-art object tracking algorithms and presents views on current and future trends in object tracking and deep learning surveillance. It also provides an analytical discussion on multi-object tracking experiments based on various datasets available for surveillance and the corresponding results obtained from the research conducted in the near past. FairMOT, GNNMatch, MPNTrack, Lif T, GSDT, and Tracktor++ are among the methods investigated. For the MOT16 and MOT17 datasets, FairMOT generated accuracy of 74.9 and 73.7, respectively, whereas GSDT provided accuracy of 60.7 and 67.1 for the 2DMOT15 and MOT20 datasets. FairMOT is an efficient tracker among the models tested, while MPNTrack is significantly more stable and retains tracklet IDs intact across frames in a series. This concludes FairMOT being an efficient tracker and MPNTrack a stable one. It also discusses a case study on the application of IoT in multi-object tracking and future prospects in surveillance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Future Generation Computer Systems, 83, 619–628.CrossRef Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Future Generation Computer Systems, 83, 619–628.CrossRef
2.
Zurück zum Zitat Monahan, T. (2018). The image of the smart city: surveillance protocols and social inequality. In Handbook of cultural Security. Edward Elgar Publishing. Monahan, T. (2018). The image of the smart city: surveillance protocols and social inequality. In Handbook of cultural Security. Edward Elgar Publishing.
3.
Zurück zum Zitat Ali, Z., Chaudhry, S. A., Ramzan, M. S., & Al-Turjman, F. (2020). Securing smart city surveillance: a lightweight authentication mechanism for unmanned vehicles. IEEE Access, 8, 43711–43724.CrossRef Ali, Z., Chaudhry, S. A., Ramzan, M. S., & Al-Turjman, F. (2020). Securing smart city surveillance: a lightweight authentication mechanism for unmanned vehicles. IEEE Access, 8, 43711–43724.CrossRef
4.
Zurück zum Zitat Vattapparamban, E., Güvenç, İ., Yurekli, A. İ., Akkaya, K., & Uluağaç, S. (2016). Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In 2016 international wireless communications and mobile computing conference (IWCMC) (pp. 216–221). IEEE. Vattapparamban, E., Güvenç, İ., Yurekli, A. İ., Akkaya, K., & Uluağaç, S. (2016). Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In 2016 international wireless communications and mobile computing conference (IWCMC) (pp. 216–221). IEEE.
5.
Zurück zum Zitat Alsamhi, S. H., Ma, O., Ansari, M. S., & Almalki, F. A. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access, 7, 128125–128152.CrossRef Alsamhi, S. H., Ma, O., Ansari, M. S., & Almalki, F. A. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access, 7, 128125–128152.CrossRef
6.
Zurück zum Zitat Chow, J. Y. J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. International Journal of Transportation Science and Technology, 5(3), 167–185.CrossRef Chow, J. Y. J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. International Journal of Transportation Science and Technology, 5(3), 167–185.CrossRef
7.
Zurück zum Zitat Koubâa, A., Qureshi, B., Sriti, M. F., Javed, Y., & Tovar, E. (2017). A service-oriented Cloud-based management system for the Internet-of-Drones. In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (pp. 329–335). IEEE. Koubâa, A., Qureshi, B., Sriti, M. F., Javed, Y., & Tovar, E. (2017). A service-oriented Cloud-based management system for the Internet-of-Drones. In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (pp. 329–335). IEEE.
8.
Zurück zum Zitat Fujimura, K., & Nanda, H. Visual tracking using depth data. U.S. Patent 7,590,262, issued September 15, 2009. Fujimura, K., & Nanda, H. Visual tracking using depth data. U.S. Patent 7,590,262, issued September 15, 2009.
9.
Zurück zum Zitat Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. S. (2016). Fully-convolutional siamese networks for object tracking. In European conference on computer vision (pp. 850–865). Springer. Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. S. (2016). Fully-convolutional siamese networks for object tracking. In European conference on computer vision (pp. 850–865). Springer.
10.
Zurück zum Zitat Zhang, P., Zhuo, T., Huang, W., Chen, K., & Kankanhalli, M. (2017). Online object tracking based on CNN with spatial-temporal saliency guided sampling. Neurocomputing, 257, 115–127.CrossRef Zhang, P., Zhuo, T., Huang, W., Chen, K., & Kankanhalli, M. (2017). Online object tracking based on CNN with spatial-temporal saliency guided sampling. Neurocomputing, 257, 115–127.CrossRef
11.
Zurück zum Zitat Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In Proceedings of the IEEE international conference on computer vision (pp. 4836–4845). Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In Proceedings of the IEEE international conference on computer vision (pp. 4836–4845).
12.
Zurück zum Zitat Chahyati, D., Fanany, M. I., & Arymurthy, A. M. (2017). Tracking people by detection using CNN features. Procedia Computer Science, 124, 167–172.CrossRef Chahyati, D., Fanany, M. I., & Arymurthy, A. M. (2017). Tracking people by detection using CNN features. Procedia Computer Science, 124, 167–172.CrossRef
13.
Zurück zum Zitat Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. P. (1997). Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785.CrossRef Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. P. (1997). Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785.CrossRef
14.
Zurück zum Zitat Leibe, B., Schindler, K., Cornelis, N., & Van Gool, L. (2008). Coupled object detection and tracking from static cameras and moving vehicles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1683–1698.CrossRef Leibe, B., Schindler, K., Cornelis, N., & Van Gool, L. (2008). Coupled object detection and tracking from static cameras and moving vehicles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1683–1698.CrossRef
15.
Zurück zum Zitat Shitrit, H. B., Berclaz, J., Fleuret, F., & Fua, P. (2013). Multi-commodity network flow for tracking multiple people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1614–1627.CrossRef Shitrit, H. B., Berclaz, J., Fleuret, F., & Fua, P. (2013). Multi-commodity network flow for tracking multiple people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1614–1627.CrossRef
16.
Zurück zum Zitat Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 75(2), 247–266.CrossRef Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 75(2), 247–266.CrossRef
17.
Zurück zum Zitat Okuma, K., Taleghani, A., De Freitas, N., Little, J. J., & Lowe, D. G. (2004). A boosted particle filter: Multitarget detection and tracking. In European conference on computer vision (pp. 28–39). Springer. Okuma, K., Taleghani, A., De Freitas, N., Little, J. J., & Lowe, D. G. (2004). A boosted particle filter: Multitarget detection and tracking. In European conference on computer vision (pp. 28–39). Springer.
18.
Zurück zum Zitat Breitenstein, M. D., Kuettel, D., Weise, T., Van Gool, L., & Pfister, H. (2008). Real-time face pose estimation from single range images. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE. Breitenstein, M. D., Kuettel, D., Weise, T., Van Gool, L., & Pfister, H. (2008). Real-time face pose estimation from single range images. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
19.
Zurück zum Zitat Wei, Y., Sun, J., Tang, X., & Shum, H. Y. (2007, October). Interactive offline tracking for color objects. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE. Wei, Y., Sun, J., Tang, X., & Shum, H. Y. (2007, October). Interactive offline tracking for color objects. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE.
20.
Zurück zum Zitat Luiten, J., Zulfikar, I. E., & Leibe, B. (2020). Unovost: Unsupervised offline video object segmentation and tracking. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 2000–2009). Luiten, J., Zulfikar, I. E., & Leibe, B. (2020). Unovost: Unsupervised offline video object segmentation and tracking. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 2000–2009).
21.
Zurück zum Zitat Singh, G., Rajan, S., & Majumdar, S. (2017, April). A greedy data association technique for multiple object tracking. In 2017 IEEE third international conference on multimedia big data (BigMM) (pp. 177–184). IEEE. Singh, G., Rajan, S., & Majumdar, S. (2017, April). A greedy data association technique for multiple object tracking. In 2017 IEEE third international conference on multimedia big data (BigMM) (pp. 177–184). IEEE.
22.
Zurück zum Zitat Jonker, R., & Volgenant, T. (1986). Improving the Hungarian assignment algorithm. Operations Research Letters, 5(4), 171–175.MathSciNetMATHCrossRef Jonker, R., & Volgenant, T. (1986). Improving the Hungarian assignment algorithm. Operations Research Letters, 5(4), 171–175.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Serby, D., Meier, E. K., & Van Gool, L. (2004, August). Probabilistic object tracking using multiple features. In Proceedings of the 17th international conference on pattern recognition. ICPR 2004 (Vol. 2, pp. 184–187). IEEE. Serby, D., Meier, E. K., & Van Gool, L. (2004, August). Probabilistic object tracking using multiple features. In Proceedings of the 17th international conference on pattern recognition. ICPR 2004 (Vol. 2, pp. 184–187). IEEE.
24.
Zurück zum Zitat Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. Acm Computing Surveys (CSUR), 38(4), 13–es. Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. Acm Computing Surveys (CSUR), 38(4), 13–es.
25.
Zurück zum Zitat Lee, B., Erdenee, E., Jin, S., Nam, M. Y., Jung, Y. G., & Rhee, P. K. (2016, October). Multi-class multi-object tracking using changing point detection. In European conference on computer vision (pp. 68–83). Springer. Lee, B., Erdenee, E., Jin, S., Nam, M. Y., Jung, Y. G., & Rhee, P. K. (2016, October). Multi-class multi-object tracking using changing point detection. In European conference on computer vision (pp. 68–83). Springer.
26.
Zurück zum Zitat Bose, B., Wang, X., & Grimson, E. (2007, June). Multi-class object tracking algorithm that handles fragmentation and grouping. In 2007 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE. Bose, B., Wang, X., & Grimson, E. (2007, June). Multi-class object tracking algorithm that handles fragmentation and grouping. In 2007 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
27.
Zurück zum Zitat Zhang, L., Li, Y., & Nevatia, R. (2008, June). Global data association for multi-object tracking using network flows. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE. Zhang, L., Li, Y., & Nevatia, R. (2008, June). Global data association for multi-object tracking using network flows. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
28.
Zurück zum Zitat Jepson, A. D., Fleet, D. J., & El-Maraghi, T. F. (2003). Robust online appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1296–1311.CrossRef Jepson, A. D., Fleet, D. J., & El-Maraghi, T. F. (2003). Robust online appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1296–1311.CrossRef
29.
Zurück zum Zitat Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning for robust visual tracking. IJCV, 77(1–3), 125–141.CrossRef Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning for robust visual tracking. IJCV, 77(1–3), 125–141.CrossRef
30.
Zurück zum Zitat Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. In BMVC. Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. In BMVC.
31.
Zurück zum Zitat Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In ECCV. Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In ECCV.
32.
Zurück zum Zitat Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV, 75(2), 247–266.CrossRef Wu, B., & Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV, 75(2), 247–266.CrossRef
33.
Zurück zum Zitat Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., & Wixson, L. (2000). A system for video surveillance and monitoring. VSAM Final Report, 2000(1–68), 1. Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., & Wixson, L. (2000). A system for video surveillance and monitoring. VSAM Final Report, 2000(1–68), 1.
34.
Zurück zum Zitat Kuno, Y., Watanabe, T., Shimosakoda, Y., & Nakagawa, S. (1996, August). Automated detection of human for visual surveillance system. In Proceedings of 13th international conference on pattern recognition (Vol. 3, pp. 865–869). IEEE. Kuno, Y., Watanabe, T., Shimosakoda, Y., & Nakagawa, S. (1996, August). Automated detection of human for visual surveillance system. In Proceedings of 13th international conference on pattern recognition (Vol. 3, pp. 865–869). IEEE.
36.
Zurück zum Zitat Zulkifley, M. A., Rawlinson, D., & Moran, B. (2012). Robust observation detection for single object tracking: deterministic and probabilistic patch-based approaches. Sensors, 12(11), 15638–15670.CrossRef Zulkifley, M. A., Rawlinson, D., & Moran, B. (2012). Robust observation detection for single object tracking: deterministic and probabilistic patch-based approaches. Sensors, 12(11), 15638–15670.CrossRef
37.
Zurück zum Zitat Wang, H., Suter, D., Schindler, K., & Shen, C. (2007). Adaptive object tracking based on an effective appearance filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1661–1667.CrossRef Wang, H., Suter, D., Schindler, K., & Shen, C. (2007). Adaptive object tracking based on an effective appearance filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1661–1667.CrossRef
38.
Zurück zum Zitat Wu, W., Wang, C., & Yuan, C. (2019). Deterministic learning from sampling data. Neurocomputing, 358, 456–466.CrossRef Wu, W., Wang, C., & Yuan, C. (2019). Deterministic learning from sampling data. Neurocomputing, 358, 456–466.CrossRef
39.
Zurück zum Zitat Weng, S. K., Kuo, C. M., & Tu, S. K. (2006). Video object tracking using adaptive Kalman filter. Journal of Visual Communication and Image Representation, 17(6), 1190–1208.CrossRef Weng, S. K., Kuo, C. M., & Tu, S. K. (2006). Video object tracking using adaptive Kalman filter. Journal of Visual Communication and Image Representation, 17(6), 1190–1208.CrossRef
40.
41.
Zurück zum Zitat Liu, J., Reich, J., & Zhao, F. (2003). Collaborative in-network processing for target tracking. EURASIP Journal on Advances in Signal Processing, 2003(4), 1–14.MATHCrossRef Liu, J., Reich, J., & Zhao, F. (2003). Collaborative in-network processing for target tracking. EURASIP Journal on Advances in Signal Processing, 2003(4), 1–14.MATHCrossRef
42.
Zurück zum Zitat Liu, J., & Guo, G. (2019). A random matrix approach for extended target tracking using distributed measurements. IEEE Sensors Journal, 1–10. Liu, J., & Guo, G. (2019). A random matrix approach for extended target tracking using distributed measurements. IEEE Sensors Journal, 1–10.
43.
Zurück zum Zitat Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 24(6), 843–854.CrossRef Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 24(6), 843–854.CrossRef
44.
Zurück zum Zitat Bernardin, K., & Stiefelhagen, R. (2008). Evaluating multiple object tracking performance: The clear mot metrics. EURASIP Journal on Image and Video Processing, 2008, 1–10.CrossRef Bernardin, K., & Stiefelhagen, R. (2008). Evaluating multiple object tracking performance: The clear mot metrics. EURASIP Journal on Image and Video Processing, 2008, 1–10.CrossRef
45.
Zurück zum Zitat Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint arXiv,1504.01942. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint arXiv,1504.01942.
46.
Zurück zum Zitat Li, Y., & Zhu, J. (2014, September). A scale adaptive kernel correlation filter tracker with feature integration. In European conference on computer vision (pp. 254–265). Springer. Li, Y., & Zhu, J. (2014, September). A scale adaptive kernel correlation filter tracker with feature integration. In European conference on computer vision (pp. 254–265). Springer.
47.
Zurück zum Zitat Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual tracking. Advances in Neural Information Processing systems. Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual tracking. Advances in Neural Information Processing systems.
48.
Zurück zum Zitat Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September. Simple online and realtime tracking. In 2016 IEEE international conference on image processing (ICIP) (pp. 3464–3468). IEEE. Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September. Simple online and realtime tracking. In 2016 IEEE international conference on image processing (ICIP) (pp. 3464–3468). IEEE.
49.
Zurück zum Zitat Held, D., Thrun, S., & Savarese, S. (2016, October). Learning to track at 100 fps with deep regression networks. In European conference on computer vision (pp. 749–765). Springer. Held, D., Thrun, S., & Savarese, S. (2016, October). Learning to track at 100 fps with deep regression networks. In European conference on computer vision (pp. 749–765). Springer.
50.
Zurück zum Zitat Jung, I., Son, J., Baek, M., & Han, B. (2018). Real-time mdnet. In Proceedings of the European conference on computer vision (ECCV) (pp. 83–98). Jung, I., Son, J., Baek, M., & Han, B. (2018). Real-time mdnet. In Proceedings of the European conference on computer vision (ECCV) (pp. 83–98).
51.
Zurück zum Zitat Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8971–8980). Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8971–8980).
52.
Zurück zum Zitat Zhang, Y., Wang, C., Wang, X., Zeng, W., & Liu, W. (2020). FairMOT: On the fairness of detection and re-identification in multiple object tracking. arXiv preprint arXiv, 2004.01888. Zhang, Y., Wang, C., Wang, X., Zeng, W., & Liu, W. (2020). FairMOT: On the fairness of detection and re-identification in multiple object tracking. arXiv preprint arXiv, 2004.01888.
53.
Zurück zum Zitat Wang, Y., Kitani, K., & Weng, X. (2020). Joint object detection and multi-object tracking with graph neural networks. arXiv preprint arXiv, 2006.13164, 5. Wang, Y., Kitani, K., & Weng, X. (2020). Joint object detection and multi-object tracking with graph neural networks. arXiv preprint arXiv, 2006.13164, 5.
54.
Zurück zum Zitat Papakis, I., Sarkar, A., & Karpatne, A. (2020). GCNNMatch: Graph convolutional neural networks for multi-object tracking via Sinkhorn normalization. arXiv preprint arXiv, 2010.00067. Papakis, I., Sarkar, A., & Karpatne, A. (2020). GCNNMatch: Graph convolutional neural networks for multi-object tracking via Sinkhorn normalization. arXiv preprint arXiv, 2010.00067.
55.
Zurück zum Zitat Bergmann, P., Meinhardt, T., & Leal-Taixe, L. (2019). Tracking without bells and whistles. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 941–951). Bergmann, P., Meinhardt, T., & Leal-Taixe, L. (2019). Tracking without bells and whistles. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 941–951).
56.
Zurück zum Zitat Brasó, G., & Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6247–6257). Brasó, G., & Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6247–6257).
57.
Zurück zum Zitat Hornakova, A., Henschel, R., Rosenhahn, B., & Swoboda, P. (2020, November). Lifted disjoint paths with application in multiple object tracking. In International conference on machine learning (pp. 4364–4375). PMLR. Hornakova, A., Henschel, R., Rosenhahn, B., & Swoboda, P. (2020, November). Lifted disjoint paths with application in multiple object tracking. In International conference on machine learning (pp. 4364–4375). PMLR.
58.
Zurück zum Zitat Zhang, F., Chengfang, L., & Lina, S. (2005). Detecting and tracking dim moving point target in IR image sequence. Infrared Physics & Technology, 46(4), 323–328.CrossRef Zhang, F., Chengfang, L., & Lina, S. (2005). Detecting and tracking dim moving point target in IR image sequence. Infrared Physics & Technology, 46(4), 323–328.CrossRef
59.
Zurück zum Zitat Liu, D., Jianqi, Z., & Weike, D. (2007). Temporal profile based small moving target detection algorithm in infrared image sequences. International Journal of Infrared and Millimeter Waves, 28(5), 373–381.CrossRef Liu, D., Jianqi, Z., & Weike, D. (2007). Temporal profile based small moving target detection algorithm in infrared image sequences. International Journal of Infrared and Millimeter Waves, 28(5), 373–381.CrossRef
60.
Zurück zum Zitat Nemati, A., & Kumar, M. (2014, June). Modeling and control of a single axis tilting quad copter. In American Control Conference (ACC), Portland, OR, pp. 3077–3082. Nemati, A., & Kumar, M. (2014, June). Modeling and control of a single axis tilting quad copter. In American Control Conference (ACC), Portland, OR, pp. 3077–3082.
61.
Zurück zum Zitat Tang, J., Xin, G., & Gang, J. (2013). Dim and weak target detection technology based on multi-characteristic fusion. In Proceedings of the 26th conference of spacecraft TT&C technology,Beijing, China, pp. 271–277. Tang, J., Xin, G., & Gang, J. (2013). Dim and weak target detection technology based on multi-characteristic fusion. In Proceedings of the 26th conference of spacecraft TT&C technology,Beijing, China, pp. 271–277.
62.
Zurück zum Zitat New, W. L., Tan, M. J., Meng, H. E., & Venkateswarlu, R. (1999, July). New method for detection of dim point targets in infrared images. In SPIE’s International symposium on optical science, engineering, and instrumentation, Denver, CO, pp. 141–150. New, W. L., Tan, M. J., Meng, H. E., & Venkateswarlu, R. (1999, July). New method for detection of dim point targets in infrared images. In SPIE’s International symposium on optical science, engineering, and instrumentation, Denver, CO, pp. 141–150.
63.
Zurück zum Zitat Deshpande, S. D., Meng, H. E., Venkateswarlu, R., & Chan, P. (1999, July). Max-mean and max-median filters for detection of small-targets. In SPIE’s International symposium on optical science, engineering, and instrumentation, Denver, CO, pp. 74–83. Deshpande, S. D., Meng, H. E., Venkateswarlu, R., & Chan, P. (1999, July). Max-mean and max-median filters for detection of small-targets. In SPIE’s International symposium on optical science, engineering, and instrumentation, Denver, CO, pp. 74–83.
64.
Zurück zum Zitat Barniv, Y. (1985). Dynamic programming solution for detecting dim moving targets. IEEE Transactions on Aerospace and Electronic Systems, 21(1), 144–156 (Current Version 2007). Barniv, Y. (1985). Dynamic programming solution for detecting dim moving targets. IEEE Transactions on Aerospace and Electronic Systems, 21(1), 144–156 (Current Version 2007).
65.
Zurück zum Zitat Mei, X., & Ling, H. (2009). Robust visual tracking using l1 minimization. In ICCV. Mei, X., & Ling, H. (2009). Robust visual tracking using l1 minimization. In ICCV.
66.
Zurück zum Zitat Zhang, T., Ghanem, B., Liu, S., & Ahuja, N.. (2012). Robust visual tracking via multi-task sparse learning. In CVPR. Zhang, T., Ghanem, B., Liu, S., & Ahuja, N.. (2012). Robust visual tracking via multi-task sparse learning. In CVPR.
67.
Zurück zum Zitat Han, B., Comaniciu, D., Zhu, Y., & Davis, L. (2008). Sequential kernel density approximation and its application to real-time visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7), 1186–1197.CrossRef Han, B., Comaniciu, D., Zhu, Y., & Davis, L. (2008). Sequential kernel density approximation and its application to real-time visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7), 1186–1197.CrossRef
68.
Zurück zum Zitat Hare, S., Saffari, A., & Torr, P. H. (2011). Struck: Structured output tracking with kernels. In ICCV. Hare, S., Saffari, A., & Torr, P. H. (2011). Struck: Structured output tracking with kernels. In ICCV.
69.
Zurück zum Zitat Li, X., Hu, W., Zhang, Z., Zhang, X., & Luo, G. (2007, October). Robust visual tracking based on incremental tensor subspace learning. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE. Li, X., Hu, W., Zhang, Z., Zhang, X., & Luo, G. (2007, October). Robust visual tracking based on incremental tensor subspace learning. In 2007 IEEE 11th international conference on computer vision (pp. 1–8). IEEE.
70.
Zurück zum Zitat Kalal, Z., Mikolajczyk, K., & Matas, J. (2011). Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1409–1422.CrossRef Kalal, Z., Mikolajczyk, K., & Matas, J. (2011). Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1409–1422.CrossRef
71.
Zurück zum Zitat Aftab, W., Hostettler, R., De Freitas, A., Arvaneh, M., & Mihaylova, L. (March 2019). Spatio-temporal gaussian process models for extended and group object tracking with irregular shapes. IEEE Transactions on Vehicular Technology, 68(3), 2137–2151.CrossRef Aftab, W., Hostettler, R., De Freitas, A., Arvaneh, M., & Mihaylova, L. (March 2019). Spatio-temporal gaussian process models for extended and group object tracking with irregular shapes. IEEE Transactions on Vehicular Technology, 68(3), 2137–2151.CrossRef
72.
Zurück zum Zitat Zhang, S., Sui, Y., Yu, X., Zhao, S., & Zhang, L. (2015). Hybrid support vector machines for robust object tracking. Pattern Recognition, 48(8), 2474–2488.CrossRef Zhang, S., Sui, Y., Yu, X., Zhao, S., & Zhang, L. (2015). Hybrid support vector machines for robust object tracking. Pattern Recognition, 48(8), 2474–2488.CrossRef
73.
Zurück zum Zitat Hadzagic, M., Michalska, H., & Lefebvre, E. (2005). Track-before detect methods in tracking low-observable targets: A survey. Sensors & Transducers Magazine, 54(1), 374–380. Hadzagic, M., Michalska, H., & Lefebvre, E. (2005). Track-before detect methods in tracking low-observable targets: A survey. Sensors & Transducers Magazine, 54(1), 374–380.
74.
Zurück zum Zitat Baris, C. (2006). Dim target detection in infrared imagery. PhD thesis, Middle East Technical University. Baris, C. (2006). Dim target detection in infrared imagery. PhD thesis, Middle East Technical University.
75.
Zurück zum Zitat Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test. Annals of Mathematical Statistics, 19(3), 326–339.MathSciNetMATHCrossRef Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test. Annals of Mathematical Statistics, 19(3), 326–339.MathSciNetMATHCrossRef
76.
Zurück zum Zitat Tzannes, A. P., & Brooks, D. H. (2002). Detecting small moving objects using temporal hypothesis testing. IEEE Transactions on Aerospace and Electronic Systems, 38(2), 570–586.CrossRef Tzannes, A. P., & Brooks, D. H. (2002). Detecting small moving objects using temporal hypothesis testing. IEEE Transactions on Aerospace and Electronic Systems, 38(2), 570–586.CrossRef
77.
Zurück zum Zitat Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR, pp 886–893. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR, pp 886–893.
78.
Zurück zum Zitat Andriyenko, A., Roth, S., & Schindler, K. (2014). Continuous energy minimization for multi-target tracking. IEEE TPAMI, 35(1). Andriyenko, A., Roth, S., & Schindler, K. (2014). Continuous energy minimization for multi-target tracking. IEEE TPAMI, 35(1).
79.
Zurück zum Zitat Brendel, W., Amer, M., & Todorovic, S. (2011). Multi object tracking as maximum weight independent set. In CVPR, pp. 1273–1280. Brendel, W., Amer, M., & Todorovic, S. (2011). Multi object tracking as maximum weight independent set. In CVPR, pp. 1273–1280.
80.
Zurück zum Zitat Yang, B., & Nevatia, R. (2012). An online learned CRF model for multi-target tracking. In CVPR, pp. 2034–2041. Yang, B., & Nevatia, R. (2012). An online learned CRF model for multi-target tracking. In CVPR, pp. 2034–2041.
81.
Zurück zum Zitat Blostein, S., & Huang, S. (1991). Detecting small moving objects in image sequences using sequential hypothesis testing. IEEE Transactions on Signal Processing, 39(7), 1611–1629.CrossRef Blostein, S., & Huang, S. (1991). Detecting small moving objects in image sequences using sequential hypothesis testing. IEEE Transactions on Signal Processing, 39(7), 1611–1629.CrossRef
82.
Zurück zum Zitat Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., & Gool, L. J. V. (2011). Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE TPAMI, 33(9), 1820–1833.CrossRef Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., & Gool, L. J. V. (2011). Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE TPAMI, 33(9), 1820–1833.CrossRef
83.
Zurück zum Zitat Poiesi, F., Mazzon, R., & Cavallaro, A. (2013). Multi-target tracking on confidence maps: An application to people tracking. CVIU, 117(10), 1257–1272. Poiesi, F., Mazzon, R., & Cavallaro, A. (2013). Multi-target tracking on confidence maps: An application to people tracking. CVIU, 117(10), 1257–1272.
84.
Zurück zum Zitat Shu, G., Dehghan, A., Oreifej, O., Hand, E., & Shah, M. (2012). Part-based multiple-person tracking with partial occlusion handling. In CVPR, pp. 1815–1821. Shu, G., Dehghan, A., Oreifej, O., Hand, E., & Shah, M. (2012). Part-based multiple-person tracking with partial occlusion handling. In CVPR, pp. 1815–1821.
85.
Zurück zum Zitat Song, X., Cui, J., Zha, H., & Zhao, H. (2008). Vision-based multiple interacting targets tracking via on-line supervised learning. In ECCV, pp. 642–655. Song, X., Cui, J., Zha, H., & Zhao, H. (2008). Vision-based multiple interacting targets tracking via on-line supervised learning. In ECCV, pp. 642–655.
86.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
87.
Zurück zum Zitat Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR.
88.
Zurück zum Zitat Fan, J., Xu, W., Wu, Y., & Gong, Y. (2010). Human tracking using convolutional neural networks. IEEE Transactions on Neural Networks, 21(10), 1610–1623.CrossRef Fan, J., Xu, W., Wu, Y., & Gong, Y. (2010). Human tracking using convolutional neural networks. IEEE Transactions on Neural Networks, 21(10), 1610–1623.CrossRef
89.
Zurück zum Zitat Li, H., Li, Y., & Porikli, F. (2014). DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC. Li, H., Li, Y., & Porikli, F. (2014). DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC.
90.
Zurück zum Zitat Wang, N., Li, S., Gupta, A., & Yeung, D.-Y.. (2015). Transferring rich feature hierarchies for robust visual tracking. arXiv preprint arXiv, 1501.04587. Wang, N., Li, S., Gupta, A., & Yeung, D.-Y.. (2015). Transferring rich feature hierarchies for robust visual tracking. arXiv preprint arXiv, 1501.04587.
91.
Zurück zum Zitat Hong, S., You, T., Kwak, S., & Han, B. (2015). Online tracking by learning discriminative saliency maps with convolutional neural networks. In ICML. Hong, S., You, T., Kwak, S., & Han, B. (2015). Online tracking by learning discriminative saliency maps with convolutional neural networks. In ICML.
92.
Zurück zum Zitat Fan, J., Xu, W., Wu, Y., & Gong, Y. (2010). Human tracking using convolutional neural networks. Neural Networks, 21, 1610–1623.CrossRef Fan, J., Xu, W., Wu, Y., & Gong, Y. (2010). Human tracking using convolutional neural networks. Neural Networks, 21, 1610–1623.CrossRef
93.
Zurück zum Zitat Li, H., Li, Y., & Porikli, F. (2014). Deeptrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC. Li, H., Li, Y., & Porikli, F. (2014). Deeptrack: Learning discriminative feature representations by convolutional neural networks for visual tracking. In BMVC.
94.
95.
Zurück zum Zitat Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.CrossRef Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.CrossRef
96.
Zurück zum Zitat Danelljan, M., Häger, G., & Khan, F. (2014). Accurate scale estimation for robust visual tracking. In British machine vision conference, pp. 1–11. Danelljan, M., Häger, G., & Khan, F. (2014). Accurate scale estimation for robust visual tracking. In British machine vision conference, pp. 1–11.
97.
Zurück zum Zitat Z. Hong, Chen, Z., Wang, C., Mei, X., Prokhorov, D., & Tao, D. (2015). MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking. In 2015 IEEE conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 749–758. https://doi.org/10.1109/CVPR.2015.7298675. Z. Hong, Chen, Z., Wang, C., Mei, X., Prokhorov, D., & Tao, D. (2015). MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking. In 2015 IEEE conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 749–758. https://​doi.​org/​10.​1109/​CVPR.​2015.​7298675.
98.
Zurück zum Zitat Reid, D. B. (1979). An algorithm for tracking multiple target. IEEE Transactions on Automatic Control, 24(6), 843–854.CrossRef Reid, D. B. (1979). An algorithm for tracking multiple target. IEEE Transactions on Automatic Control, 24(6), 843–854.CrossRef
99.
Zurück zum Zitat Chen, L., Wainwright, M. J., Cetin, M., & Willsky, A. S. (2006). Data association based on optimization in graphical models with application to sensor networks. Mathematical and Computer Modelling, 43(9–10), 1114–1135.MathSciNetMATHCrossRef Chen, L., Wainwright, M. J., Cetin, M., & Willsky, A. S. (2006). Data association based on optimization in graphical models with application to sensor networks. Mathematical and Computer Modelling, 43(9–10), 1114–1135.MathSciNetMATHCrossRef
100.
Zurück zum Zitat Liu, T., Sun, J., Zheng, N., Tang, X., & Shum, H. -Y. (2007). Learning to detect a salient object. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–8. Liu, T., Sun, J., Zheng, N., Tang, X., & Shum, H. -Y. (2007). Learning to detect a salient object. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–8.
101.
Zurück zum Zitat Hosang, J., Benenson, R., Dollar, P., & Schiele, B. (2016). What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 814–830.CrossRef Hosang, J., Benenson, R., Dollar, P., & Schiele, B. (2016). What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 814–830.CrossRef
102.
Zurück zum Zitat Alexe, B., Deselaers T., Ferrari, V. (2010). What is an object? In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 73–80. Alexe, B., Deselaers T., Ferrari, V. (2010). What is an object? In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 73–80.
103.
Zurück zum Zitat Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. L. (2001). Color image segmentation: Advances and prospects. Pattern Recognition, 34(12), 2259–2281.MATHCrossRef Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. L. (2001). Color image segmentation: Advances and prospects. Pattern Recognition, 34(12), 2259–2281.MATHCrossRef
104.
Zurück zum Zitat Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433.
105.
Zurück zum Zitat Koch, C., & Ullman, S. (1987). Shifts in selective visual attention: Towards the underlying neural circuitry. In: Vaina, L. M. (Ed.), Matters of intelligence. Synthese library (Studies in epistemology, logic, methodology, and philosophy of science, Vol. 188, pp. 115–141). Springer. Koch, C., & Ullman, S. (1987). Shifts in selective visual attention: Towards the underlying neural circuitry. In: Vaina, L. M. (Ed.), Matters of intelligence. Synthese library (Studies in epistemology, logic, methodology, and philosophy of science, Vol. 188, pp. 115–141). Springer.
106.
Zurück zum Zitat Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1), 107–123.CrossRef Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1), 107–123.CrossRef
107.
Zurück zum Zitat Liu, T., Yuan, Z. J., Sun, J., Wang, J. D., Zheng, N. N., Tang, X. O., & Shum, H.-Y. (2011). Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367.CrossRef Liu, T., Yuan, Z. J., Sun, J., Wang, J. D., Zheng, N. N., Tang, X. O., & Shum, H.-Y. (2011). Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367.CrossRef
108.
Zurück zum Zitat Achanta, R., Estrada, F., Wils, P., & Susstrunk, S. (2008). Salient region detection and segmentation. In Gasteratos, A., Vincze, M., Tsotsos, J. K. (Eds.), Computer vision systems (Lecture notes in computer science, Vol. 5008, pp. 66–75). Springer. Achanta, R., Estrada, F., Wils, P., & Susstrunk, S. (2008). Salient region detection and segmentation. In Gasteratos, A., Vincze, M., Tsotsos, J. K. (Eds.), Computer vision systems (Lecture notes in computer science, Vol. 5008, pp. 66–75). Springer.
109.
Zurück zum Zitat Ma, Y.-F., & Zhang, H.-J. (2003). Contrast-based image attention analysis by using fuzzy growing. In Proceedings of the 11th ACM international conference on multimedia, pp. 374–381. Ma, Y.-F., & Zhang, H.-J. (2003). Contrast-based image attention analysis by using fuzzy growing. In Proceedings of the 11th ACM international conference on multimedia, pp. 374–381.
110.
Zurück zum Zitat Hua, G., Liu, Z. C., Zhang, Z. Y., & Wu, Y. (2006). Iterative local-global energy minimization for automatic extraction of objects of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1701–1706.CrossRef Hua, G., Liu, Z. C., Zhang, Z. Y., & Wu, Y. (2006). Iterative local-global energy minimization for automatic extraction of objects of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1701–1706.CrossRef
111.
Zurück zum Zitat Ko, B. C., & Nam, J.-Y. (2006). Automatic object-of-interest segmentation from natural images. In Proceedings of the 18th international conference on pattern recognition, pp. 45–48. Ko, B. C., & Nam, J.-Y. (2006). Automatic object-of-interest segmentation from natural images. In Proceedings of the 18th international conference on pattern recognition, pp. 45–48.
112.
Zurück zum Zitat Allili, M. S., & Ziou, D. (2007). Object of interest segmentation and tracking by using feature selection and active contours. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–8. Allili, M. S., & Ziou, D. (2007). Object of interest segmentation and tracking by using feature selection and active contours. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–8.
113.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
114.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440. Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440.
115.
Zurück zum Zitat Xie, S., Girshick, R. B., Dollar, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In CVPR. Xie, S., Girshick, R. B., Dollar, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In CVPR.
116.
Zurück zum Zitat Kong, T., Sun, F., Yao, A., Liu, H., Lv, M., & Chen, Y. (2017). Ron: Reverse connection with objectness prior networks for object detection. In CVPR. Kong, T., Sun, F., Yao, A., Liu, H., Lv, M., & Chen, Y. (2017). Ron: Reverse connection with objectness prior networks for object detection. In CVPR.
117.
Zurück zum Zitat Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS.
118.
Zurück zum Zitat Liu, J., Zhang, S., Wang, S., & Metaxas, D. N. (2016). Multispectral deep neural networks for pedestrian detection. arXiv, 1611.02644. Liu, J., Zhang, S., Wang, S., & Metaxas, D. N. (2016). Multispectral deep neural networks for pedestrian detection. arXiv, 1611.02644.
119.
Zurück zum Zitat Li, Y., He, K., Sun, J. et al. (2016). R-fcn: Object detection via region-based fully convolutional networks. In NIPS, pp. 379–387. Li, Y., He, K., Sun, J. et al. (2016). R-fcn: Object detection via region-based fully convolutional networks. In NIPS, pp. 379–387.
120.
Zurück zum Zitat Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In Proceedings of the European Conference Computer Vision. Workshops. Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In Proceedings of the European Conference Computer Vision. Workshops.
121.
Zurück zum Zitat Su, C., Zhang, S., Xing, J., Gao, W., & Tian, Q. (2016). Deep attributes driven multi-camera person re-identification. In Proceedings of the European conference computer vision, pp. 475–491. Su, C., Zhang, S., Xing, J., Gao, W., & Tian, Q. (2016). Deep attributes driven multi-camera person re-identification. In Proceedings of the European conference computer vision, pp. 475–491.
122.
Zurück zum Zitat Zhou, B., Wang, X., & Tang, X. (2012). Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In Proceedings of the IEEE computer society conference computer vision pattern recognition, pp. 2871–2878. Zhou, B., Wang, X., & Tang, X. (2012). Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In Proceedings of the IEEE computer society conference computer vision pattern recognition, pp. 2871–2878.
Metadaten
Titel
Understanding New Age of Intelligent Video Surveillance and Deeper Analysis on Deep Learning Techniques for Object Tracking
verfasst von
Preeti Nagrath
Narina Thakur
Rachna Jain
Dharmender Saini
Nitika Sharma
Jude Hemanth
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89554-9_2

Neuer Inhalt