Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2021

15.07.2021 | ORIGINAL ARTICLE

Understanding novel assisted electrode from a theoretical and experimental perspectives for EDM of aluminum nitride ceramics

verfasst von: Asif Rashid, Asma Perveen, Muhammad P. Jahan

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although ceramic materials are known for their high-temperature stability, high hardness, high strength-to-weight ratio, and high resistivity to wear, their inherent brittleness makes them difficult to machine. Electrical discharge machining (EDM) is a noncontact machining process that can machine any workpiece irrespective of its hardness, as long as the material is electrically conductive. Therefore, the challenge that comes with the EDM of ceramics is the electrical nonconductivity. This study has focused on implementing and modifying assisted electrode method to machine aluminum nitride (AlN) ceramics by the EDM process with a goal of machining through holes. A successful sandwich structured multilayer removable coating assistive electrode method has been developed, and the effectiveness of assistive electrode in the material removal process has been investigated from experimental and theoretical perspectives. A physics-based model has been proposed to understand the material removal mechanism and how the proposed assistive electrode can lead to successful machining in electrically nonconductive ceramics. Melting and thermal spalling have been identified as dominant forms of material removal during EDM of nonconductive ceramics. The amount of carbon deposition on the walls of the machined surface is a key parameter that dictates the feasibility and outcome of the method. Deposition of carbon introduces electrical conductivity to the machining zone that allows machining to go through. According to the model, plasma channel radius is reduced due to the low conductivity of the workpiece, which aids in concentrated energy transfer from electrode to workpiece. In addition, the maximum heat flux generated for a particular peak current also decreases with the increment of pulse-on time. The proposed physics-based model was found to be effective in predicting the performance of assistive electrode for EDM of ceramics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ryan W (1978) Properties of ceramic raw materials. 2nd Edition, Pergamon, Elsevier, 1978. eBook ISBN: 9781483146591 Ryan W (1978) Properties of ceramic raw materials. 2nd Edition, Pergamon, Elsevier, 1978. eBook ISBN: 9781483146591
26.
Zurück zum Zitat Rashid A, Bilal A, Liu C, Jahan MP, Talamona D, Perveen A (2019) Effect of conductive coatings on micro-electro-discharge machinability of aluminum nitride ceramic using on-machine-fabricated microelectrodes. Materials 12(20). https://doi.org/10.3390/ma12203316 Rashid A, Bilal A, Liu C, Jahan MP, Talamona D, Perveen A (2019) Effect of conductive coatings on micro-electro-discharge machinability of aluminum nitride ceramic using on-machine-fabricated microelectrodes. Materials 12(20). https://​doi.​org/​10.​3390/​ma12203316
28.
Zurück zum Zitat Rashid A, Jahan MP, Perveen A, Ma J (2020) Machining of through holes in non-conductive aluminum nitride ceramic using electrical discharge machining process. ASME 2020 15th International Manufacturing Science and Engineering Conference (MSEC 2020), June 22-26, 2020, Cincinnati, OH, USA Rashid A, Jahan MP, Perveen A, Ma J (2020) Machining of through holes in non-conductive aluminum nitride ceramic using electrical discharge machining process. ASME 2020 15th International Manufacturing Science and Engineering Conference (MSEC 2020), June 22-26, 2020, Cincinnati, OH, USA
29.
Zurück zum Zitat Bilal A, Perveen A, Talamona D, Jahan MP (2021) Understanding material removal mechanism and effects of machining parameters during EDM of zirconia-toughened alumina ceramic. Micromachines 12:67CrossRef Bilal A, Perveen A, Talamona D, Jahan MP (2021) Understanding material removal mechanism and effects of machining parameters during EDM of zirconia-toughened alumina ceramic. Micromachines 12:67CrossRef
Metadaten
Titel
Understanding novel assisted electrode from a theoretical and experimental perspectives for EDM of aluminum nitride ceramics
verfasst von
Asif Rashid
Asma Perveen
Muhammad P. Jahan
Publikationsdatum
15.07.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07660-9

Weitere Artikel der Ausgabe 9-10/2021

The International Journal of Advanced Manufacturing Technology 9-10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.