Skip to main content
Erschienen in: Wireless Networks 4/2020

18.05.2019

Underwater sensor networks localization based on mobility-constrained beacon

verfasst von: Ying Guo, Qinghe Han, Xiaoyue Kang

Erschienen in: Wireless Networks | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Node localization is one of the key technologies of Underwater Sensor Networks (UWSN). Because of the unique ocean environment conditions, beacon nodes are difficult to deploy precisely and move under the action of ocean currents and tides. Usually the beacon nodes are fixed to the sea floor through anchors and cables, and they can move within a certain range. Most existing localization algorithms do not take such mobility of beacon nodes into account, resulting in large localization errors. In order to overcome this disadvantage, this paper analyzes the characteristics of mobile-constrained beacon nodes and proposes a new localization algorithm in UWSN, namely, Mobile-constrained beacon based localization algorithm. It solves the problem that the position of beacon node is dynamic and imprecise. The unknown node can be located by the geometric relationship between the position of the anchor and the moving radius of the beacon node. In the calculation process, the polygonal area is transformed into a rectangular area, and the three-dimensional (3D) space is mapped into a two-dimensional (2D) space, the calculation process is simplified, and the feasibility of the algorithm is improved. The algorithm can be used both for 2D and 3D localization. Experiment results show that the algorithm proposed in this paper improves the localization accuracy, reduces the error rate of network node location, and has good practicality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, Y., Lu, H., Li, K. C., Kim, H., & Serikawa, S. (2018). Non-uniform de-scattering and de-blurring of Underwater Images. Mobile Networks and Applications,23(2), 352–362.CrossRef Li, Y., Lu, H., Li, K. C., Kim, H., & Serikawa, S. (2018). Non-uniform de-scattering and de-blurring of Underwater Images. Mobile Networks and Applications,23(2), 352–362.CrossRef
2.
Zurück zum Zitat Guo, Z. W., Luo, H. J., Hong, F., et al. (2010). Research progress of underwater wireless sensor networks. Computer Research and Development,47(3), 377–389. Guo, Z. W., Luo, H. J., Hong, F., et al. (2010). Research progress of underwater wireless sensor networks. Computer Research and Development,47(3), 377–389.
3.
Zurück zum Zitat Ruan, H. (2013). Design and implementation of node localization algorithm for underwater wireless sensor networks. Nanjing: Nanjing University of Posts and Telecommunications. Ruan, H. (2013). Design and implementation of node localization algorithm for underwater wireless sensor networks. Nanjing: Nanjing University of Posts and Telecommunications.
4.
Zurück zum Zitat Wang, S. L. (2014). Research on rigid location discrimination of underwater sensor networks based on skeleton extraction. Hefei University of Technology,38(3), 589–601. Wang, S. L. (2014). Research on rigid location discrimination of underwater sensor networks based on skeleton extraction. Hefei University of Technology,38(3), 589–601.
5.
Zurück zum Zitat Ismail, N. S. N., Hussein, L. A., & Ariffin, S. H. S. (2010). Analyzing the performance of acoustic channel in underwater wireless sensor network (UWSN). In IEEE. Ismail, N. S. N., Hussein, L. A., & Ariffin, S. H. S. (2010). Analyzing the performance of acoustic channel in underwater wireless sensor network (UWSN). In IEEE.
6.
Zurück zum Zitat Hossain, M. F., Wali, M. B., Munasinghe, K. S., et al. (2016). Three dimensional (3D) underwater sensor network architectures for intruder localization using EM wave. In Wireless communications and networking conference (pp. 1–5). IEEE. Hossain, M. F., Wali, M. B., Munasinghe, K. S., et al. (2016). Three dimensional (3D) underwater sensor network architectures for intruder localization using EM wave. In Wireless communications and networking conference (pp. 1–5). IEEE.
7.
Zurück zum Zitat Karpeles, M., & Torres, D. (2010). Underwater acoustic communication. In: Mechanisms for autonomous management of networks and services, and, international conference on autonomous infrastructure, management and security (pp. 98–101). Springer. Karpeles, M., & Torres, D. (2010). Underwater acoustic communication. In: Mechanisms for autonomous management of networks and services, and, international conference on autonomous infrastructure, management and security (pp. 98–101). Springer.
8.
Zurück zum Zitat Li, Z., Guo, Z., Hong, F., et al. (2013). E2DTS: An energy efficiency distributed time synchronization algorithm for underwater acoustic mobile sensor networks. Ad Hoc Networks,11(4), 1372–1380.CrossRef Li, Z., Guo, Z., Hong, F., et al. (2013). E2DTS: An energy efficiency distributed time synchronization algorithm for underwater acoustic mobile sensor networks. Ad Hoc Networks,11(4), 1372–1380.CrossRef
9.
Zurück zum Zitat Yu, X., Chu, Y., Jiang, F., et al. (2018). SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowledge-Based Systems,141, 80–91.CrossRef Yu, X., Chu, Y., Jiang, F., et al. (2018). SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowledge-Based Systems,141, 80–91.CrossRef
10.
Zurück zum Zitat Das, A. P., & Thampi, S. M. (2016). Fault-resilient localization for underwater sensor networks. Ad Hoc Networks,55, 132–142.CrossRef Das, A. P., & Thampi, S. M. (2016). Fault-resilient localization for underwater sensor networks. Ad Hoc Networks,55, 132–142.CrossRef
11.
Zurück zum Zitat Faugstadmo, J. E., Pettersen, M., Hovem, J. M., et al. (2013). Underwater wireless sensor network. In Oceans (pp. 422–427). IEEE. Faugstadmo, J. E., Pettersen, M., Hovem, J. M., et al. (2013). Underwater wireless sensor network. In Oceans (pp. 422–427). IEEE.
12.
Zurück zum Zitat Aparicio, J., Jiménez, A., Álvarez, F. J., et al. (2016). Characterization of an underwater positioning system based on gps surface nodes and encoded acoustic signals. IEEE Transactions on Instrumentation and Measurement,65(8), 1773–1784.CrossRef Aparicio, J., Jiménez, A., Álvarez, F. J., et al. (2016). Characterization of an underwater positioning system based on gps surface nodes and encoded acoustic signals. IEEE Transactions on Instrumentation and Measurement,65(8), 1773–1784.CrossRef
13.
Zurück zum Zitat Ahmed, M., Salleh, M., & Channa, M. I. (2016). Routing protocols based on node mobility for underwater wireless sensor network (UWSN): A survey. Journal of Network and Computer Applications,78, 242–252.CrossRef Ahmed, M., Salleh, M., & Channa, M. I. (2016). Routing protocols based on node mobility for underwater wireless sensor network (UWSN): A survey. Journal of Network and Computer Applications,78, 242–252.CrossRef
14.
Zurück zum Zitat Luo, H., Wu, K., Ruby, R., et al. (2017). Simulation and experimentation platforms for underwater acoustic sensor networks: Advancements and challenges. ACM Computing Surveys,50(2), 28.CrossRef Luo, H., Wu, K., Ruby, R., et al. (2017). Simulation and experimentation platforms for underwater acoustic sensor networks: Advancements and challenges. ACM Computing Surveys,50(2), 28.CrossRef
15.
Zurück zum Zitat Du, X. J., Huang, K. J., Liu, F., et al. (2013). Micro-ANP: A novel network protocol architecture for underwater sensor network. Applied Mechanics and Materials,303–306, 223–230.CrossRef Du, X. J., Huang, K. J., Liu, F., et al. (2013). Micro-ANP: A novel network protocol architecture for underwater sensor network. Applied Mechanics and Materials,303–306, 223–230.CrossRef
16.
Zurück zum Zitat Zhou, Z., Cui, J. H., & Bagtzoglou, A. (2008). Scalable localization with mobility prediction for underwater sensor networks. In The conference on computer communications INFOCOM 2008 (pp. 2198–2206). IEEE. Zhou, Z., Cui, J. H., & Bagtzoglou, A. (2008). Scalable localization with mobility prediction for underwater sensor networks. In The conference on computer communications INFOCOM 2008 (pp. 2198–2206). IEEE.
17.
Zurück zum Zitat Walter, N., & Rakesh, N. (2018). See through approach for the solution to node mobility issue in underwater sensor network (UWSN). In Networking communication and data knowledge engineering. Walter, N., & Rakesh, N. (2018). See through approach for the solution to node mobility issue in underwater sensor network (UWSN). In Networking communication and data knowledge engineering.
18.
Zurück zum Zitat Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine,47(1), 84–89.CrossRef Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine,47(1), 84–89.CrossRef
19.
Zurück zum Zitat Sun, D. J., Zheng, C. E., Qian, H. B., et al. (2012). Application of underwater acoustic positioning system in marine engineering. Acoustic Technology,31(2), 125–132. Sun, D. J., Zheng, C. E., Qian, H. B., et al. (2012). Application of underwater acoustic positioning system in marine engineering. Acoustic Technology,31(2), 125–132.
20.
Zurück zum Zitat Liang, N. N., Cheng, Y. W., Wang, N., et al. (2018). Development and application of underwater acoustic positioning system. Technology and Market,25(11), 147–149. Liang, N. N., Cheng, Y. W., Wang, N., et al. (2018). Development and application of underwater acoustic positioning system. Technology and Market,25(11), 147–149.
21.
Zurück zum Zitat Zhang, C., Liu, Y., Guo, Z., et al. (2014) Minimum cost localization problem in three-dimensional ocean sensor networks. In IEEE international conference on communications (pp. 496–501). IEEE. Zhang, C., Liu, Y., Guo, Z., et al. (2014) Minimum cost localization problem in three-dimensional ocean sensor networks. In IEEE international conference on communications (pp. 496–501). IEEE.
22.
Zurück zum Zitat Lu, H., Li, Y., Uemura, T., Kim, H., & Serikawa, S. (2018). Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Generation Computer Systems,82, 142–148.CrossRef Lu, H., Li, Y., Uemura, T., Kim, H., & Serikawa, S. (2018). Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Generation Computer Systems,82, 142–148.CrossRef
23.
Zurück zum Zitat Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Applications,23(2), 368–375.CrossRef Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Applications,23(2), 368–375.CrossRef
24.
Zurück zum Zitat Wang, L. W., Yao, Y., Du, H. S., et al. (2018). The network location technology of large scale underwater acoustic sensor. Ship Science and Technology, 2018(13), 106–110, 120. Wang, L. W., Yao, Y., Du, H. S., et al. (2018). The network location technology of large scale underwater acoustic sensor. Ship Science and Technology, 2018(13), 106–110, 120.
25.
Zurück zum Zitat Heidemann, J., Stojanovic, M., & Zorzi, M. (1958). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions,2012(370), 158. Heidemann, J., Stojanovic, M., & Zorzi, M. (1958). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions,2012(370), 158.
26.
Zurück zum Zitat Shu, M. L., Cui, H. Q., Wang, Y. L., et al. (2015). Planning the obstacle-avoidance trajectory of mobile anchor in 3D sensor networks. Science China Information Sciences,58(10), 102304.CrossRef Shu, M. L., Cui, H. Q., Wang, Y. L., et al. (2015). Planning the obstacle-avoidance trajectory of mobile anchor in 3D sensor networks. Science China Information Sciences,58(10), 102304.CrossRef
27.
Zurück zum Zitat Erol, M., Vieira, L. F. M., & Gerla, M. (2007). AUV-aided localization for underwater sensor networks. In International conference on wireless algorithms. IEEE. Erol, M., Vieira, L. F. M., & Gerla, M. (2007). AUV-aided localization for underwater sensor networks. In International conference on wireless algorithms. IEEE.
28.
Zurück zum Zitat Isik, M. T., & Akan, O. B. (2009). A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications,8(9), 4457–4463.CrossRef Isik, M. T., & Akan, O. B. (2009). A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications,8(9), 4457–4463.CrossRef
29.
Zurück zum Zitat Liu, L., & Wu, J. (2015). Zhu Z (2015) Multihops fitting approach for node localization in underwater wireless sensor networks. International Journal of Distributed Sensor Networks,11(2), 682182.CrossRef Liu, L., & Wu, J. (2015). Zhu Z (2015) Multihops fitting approach for node localization in underwater wireless sensor networks. International Journal of Distributed Sensor Networks,11(2), 682182.CrossRef
30.
Zurück zum Zitat Guo, Z., Guo, Y., Hong, F., et al. (2010). Perpendicular intersection: Locating wireless sensors with mobile beacon. IEEE Transactions on Vehicular Technology,59(7), 3501–3509.CrossRef Guo, Z., Guo, Y., Hong, F., et al. (2010). Perpendicular intersection: Locating wireless sensors with mobile beacon. IEEE Transactions on Vehicular Technology,59(7), 3501–3509.CrossRef
31.
Zurück zum Zitat Ying, G. (2010). Research on key technologies of event-triggered wireless sensor networks. Qingdao: Ocean University of China. Ying, G. (2010). Research on key technologies of event-triggered wireless sensor networks. Qingdao: Ocean University of China.
32.
Zurück zum Zitat Luo, H., Guo, Z., Dong, W., et al. (2010). LDB: Localization with directional beacons for sparse 3D underwater acoustic sensor networks. Journal of Networks,5(1), 28–38.CrossRef Luo, H., Guo, Z., Dong, W., et al. (2010). LDB: Localization with directional beacons for sparse 3D underwater acoustic sensor networks. Journal of Networks,5(1), 28–38.CrossRef
33.
Zurück zum Zitat Lee, S., & Kim, K. (2012). Localization with a mobile beacon in underwater acoustic sensor networks. Sensors,12(5), 5486–5501.CrossRef Lee, S., & Kim, K. (2012). Localization with a mobile beacon in underwater acoustic sensor networks. Sensors,12(5), 5486–5501.CrossRef
34.
Zurück zum Zitat Yang, Z., Li, M., & Liu, Y. (2007). Sea depth measurement with restricted floating sensors. In IEEE RTSS 2007, Tucson, Arizona, USA. Yang, Z., Li, M., & Liu, Y. (2007). Sea depth measurement with restricted floating sensors. In IEEE RTSS 2007, Tucson, Arizona, USA.
35.
Zurück zum Zitat Luo, H., Wu, K., Gong, Y., et al. (2016). Localization for drifting restricted floating ocean sensor networks. IEEE Transactions on Vehicular Technology,65, 9968–9981.CrossRef Luo, H., Wu, K., Gong, Y., et al. (2016). Localization for drifting restricted floating ocean sensor networks. IEEE Transactions on Vehicular Technology,65, 9968–9981.CrossRef
36.
Zurück zum Zitat Luo, J., & Fan, L. (2017). A two-phase time synchronization-free localization algorithm for underwater sensor networks. Sensors,17(4), 726.CrossRef Luo, J., & Fan, L. (2017). A two-phase time synchronization-free localization algorithm for underwater sensor networks. Sensors,17(4), 726.CrossRef
37.
Zurück zum Zitat Chang, H. Y., Kang, H. L., Moon, H. P., et al. (2009). Sensor localization algorithms in underwater wireless sensor networks. In Iccas-Sice (pp. 1760–1764). IEEE. Chang, H. Y., Kang, H. L., Moon, H. P., et al. (2009). Sensor localization algorithms in underwater wireless sensor networks. In Iccas-Sice (pp. 1760–1764). IEEE.
Metadaten
Titel
Underwater sensor networks localization based on mobility-constrained beacon
verfasst von
Ying Guo
Qinghe Han
Xiaoyue Kang
Publikationsdatum
18.05.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02023-5

Weitere Artikel der Ausgabe 4/2020

Wireless Networks 4/2020 Zur Ausgabe

Neuer Inhalt