Skip to main content
Erschienen in:

29.08.2024

Unequal-radius clustering in WSN-based IoT networks: energy optimization and load balancing in UDCOPA protocol

verfasst von: Foudil Mir, Farid Meziane

Erschienen in: The Journal of Supercomputing | Ausgabe 19/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The internet of things (IoT) is an exponentially growing network of physical objects equipped with sensors, software and network connectivities to collect, process, transmit and receive data. Wireless sensor networks (WSNs) play an essential role in supporting the IoT. These networks, made up of nodes with the ability to monitor their environment, enable the collection and transmission of specific data in real time, offering enhanced applications and services within IoT networks. This symbiosis between WSN and IoT can be defined as WSN-based IoT. The complexity of WSN-based IoT lies in the effective management of these varied devices, each with its own distinct capabilities. Clustering is a popular technique for reducing the communication load, conserving energy, aggregating data and optimizing the performance of WSN-based IoT systems. Once the cluster heads (CHs) are chosen, conventional clustering algorithms typically use a single radius of clustering (RC) to group devices into multiple clusters. However, this approach may not be optimized for WSN-based IoT networks, as devices may have different features, for example, the residual energy (\(R_{\rm Enrg}\)) and the distance to the base station (DistBS). In a previous work, we proposed the DCOPA (a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications) protocol for clustering in WSN-based IoT networks. DCOPA applies the same clustering algorithm to the elected CHs, without considering their distinctions in terms of \(R_{\rm Enrg}\) and DistBS. The proposed new approach, called unequal-DCOPA (UDCOPA), allows us to define for each CH its adaptive radius of clustering (ARC) which will be sensitive to the local criteria of \(R_{\rm Enrg}\) and DistBS of the CH concerned. The ARC is modeled as a multicriteria system applied to each CH. Simulation results show that our new UDCOPA approach outperforms DCOPA and LEACH protocols for energy management, load balancing, scalability and network lifetime. UDCOPA increases lifetime by (62.61%) over LEACH and by (32.72%) over DCOPA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adeel A et al (2019) A survey on the role of wireless sensor networks and iot in disaster management. In: Durrani T, Wang W, Forbes S (eds) Geological disaster monitoring based on sensor networks. Springer, Singapore, pp 57–66CrossRef Adeel A et al (2019) A survey on the role of wireless sensor networks and iot in disaster management. In: Durrani T, Wang W, Forbes S (eds) Geological disaster monitoring based on sensor networks. Springer, Singapore, pp 57–66CrossRef
2.
Zurück zum Zitat Asin A, Gascon D (2012) 50 sensor applications for a smarter world. Libelium Comunicaciones Distribuidas, Tech Rep, pp 589–594 Asin A, Gascon D (2012) 50 sensor applications for a smarter world. Libelium Comunicaciones Distribuidas, Tech Rep, pp 589–594
3.
Zurück zum Zitat Jha V, Sharma R (2022) An energy efficient weighted clustering algorithm in heterogeneous wireless sensor networks. J Supercomput 78(12):14266–14293CrossRef Jha V, Sharma R (2022) An energy efficient weighted clustering algorithm in heterogeneous wireless sensor networks. J Supercomput 78(12):14266–14293CrossRef
4.
Zurück zum Zitat Singh H, Singh D (2021) Hierarchical clustering and routing protocol to ensure scalability and reliability in large-scale wireless sensor networks. J Supercomput 77(9):10165–10183CrossRef Singh H, Singh D (2021) Hierarchical clustering and routing protocol to ensure scalability and reliability in large-scale wireless sensor networks. J Supercomput 77(9):10165–10183CrossRef
5.
Zurück zum Zitat Banerjee A, De SK, Majumder K, Dash D, Chattopadhyay S (2022) Construction of energy minimized WSN using GA-SAMP-MWPSO and k-mean clustering algorithm with LDCF deployment strategy. J Supercomput 78(8):11015–11050CrossRef Banerjee A, De SK, Majumder K, Dash D, Chattopadhyay S (2022) Construction of energy minimized WSN using GA-SAMP-MWPSO and k-mean clustering algorithm with LDCF deployment strategy. J Supercomput 78(8):11015–11050CrossRef
6.
Zurück zum Zitat Mir F, Meziane F (2023) DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Comput 26:1077–1098CrossRef Mir F, Meziane F (2023) DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Comput 26:1077–1098CrossRef
7.
Zurück zum Zitat Mir F, Meziane F (2024) Novel adaptive DCOPA using dynamic weighting for vector of performances indicators optimization of IoT networks. Expert Syst Appl 247:123212CrossRef Mir F, Meziane F (2024) Novel adaptive DCOPA using dynamic weighting for vector of performances indicators optimization of IoT networks. Expert Syst Appl 247:123212CrossRef
8.
Zurück zum Zitat Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer, BerlinCrossRef Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer, BerlinCrossRef
9.
Zurück zum Zitat Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. IEEE, p 10 Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. IEEE, p 10
10.
Zurück zum Zitat Mir F, Meziane F (2023) Unequal clustering protocol in IoT networks based on multiple criteria processing. In: ICISS ’23. ACM, pp 132–136 Mir F, Meziane F (2023) Unequal clustering protocol in IoT networks based on multiple criteria processing. In: ICISS ’23. ACM, pp 132–136
11.
Zurück zum Zitat Mir F, Bounceur A, Meziane F (2014) Regression analysis for energy and lifetime prediction in large wireless sensor networks. In: 2014 International Conference on Advanced Networking Distributed Systems and Applications. IEEE, pp 1–6 Mir F, Bounceur A, Meziane F (2014) Regression analysis for energy and lifetime prediction in large wireless sensor networks. In: 2014 International Conference on Advanced Networking Distributed Systems and Applications. IEEE, pp 1–6
12.
Zurück zum Zitat Farman H, Javed H, Ahmad J, Jan B, Zeeshan M (2016) Grid-based hybrid network deployment approach for energy efficient wireless sensor networks. J Sens 2016(1):2326917 Farman H, Javed H, Ahmad J, Jan B, Zeeshan M (2016) Grid-based hybrid network deployment approach for energy efficient wireless sensor networks. J Sens 2016(1):2326917
13.
Zurück zum Zitat Farman H et al (2018) Multi-criteria based zone head selection in internet of things based wireless sensor networks. Future Gener Comput Syst 87:364–371CrossRef Farman H et al (2018) Multi-criteria based zone head selection in internet of things based wireless sensor networks. Future Gener Comput Syst 87:364–371CrossRef
14.
Zurück zum Zitat Liao Y, Qi H, Li W (2012) Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens J 13(5):1498–1506CrossRef Liao Y, Qi H, Li W (2012) Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens J 13(5):1498–1506CrossRef
15.
Zurück zum Zitat Shivhare A, Singh VK, Kumar M (2020) Anticomplementary triangles for efficient coverage in sensor network-based IoT. IEEE Syst J 14(4):4854–4863CrossRef Shivhare A, Singh VK, Kumar M (2020) Anticomplementary triangles for efficient coverage in sensor network-based IoT. IEEE Syst J 14(4):4854–4863CrossRef
16.
Zurück zum Zitat Shivhare A, Singh VK, Kumar M (2023) Event detection using the user context in sensor based IoT. Wireless Netw 29(6):2577–2589CrossRef Shivhare A, Singh VK, Kumar M (2023) Event detection using the user context in sensor based IoT. Wireless Netw 29(6):2577–2589CrossRef
17.
Zurück zum Zitat Maurya MK et al (2022) Cluster based smart random walk for data aggregation in wireless sensor network. In: 2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, pp 98–104 Maurya MK et al (2022) Cluster based smart random walk for data aggregation in wireless sensor network. In: 2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, pp 98–104
18.
Zurück zum Zitat Yu J, Qi Y, Wang G, Guo Q, Gu X (2011) An energy-aware distributed unequal clustering protocol for wireless sensor networks. Int J Distrib Sens Netw 7(1):202145CrossRef Yu J, Qi Y, Wang G, Guo Q, Gu X (2011) An energy-aware distributed unequal clustering protocol for wireless sensor networks. Int J Distrib Sens Netw 7(1):202145CrossRef
19.
Zurück zum Zitat Ye M, Li C, Chen G, Wu J (2005) EECS: an energy efficient clustering scheme in wireless sensor networks. In: 24th IEEE International Performance, Computing, and Communications Conference. IEEE, pp 535–540 Ye M, Li C, Chen G, Wu J (2005) EECS: an energy efficient clustering scheme in wireless sensor networks. In: 24th IEEE International Performance, Computing, and Communications Conference. IEEE, pp 535–540
20.
Zurück zum Zitat Jain A (2022) Unequal clustering protocols for wireless sensor networks-taxonomy, comparison and simulation. Wireless Pers Commun 124(1):517–571CrossRef Jain A (2022) Unequal clustering protocols for wireless sensor networks-taxonomy, comparison and simulation. Wireless Pers Commun 124(1):517–571CrossRef
21.
Zurück zum Zitat Jyun-Yuan C, Shanq-Jang R, Ray-Guang C, Teng-Tai H (2006) PADCP: power-aware dynamic clustering protocol for wireless sensor networks Jyun-Yuan C, Shanq-Jang R, Ray-Guang C, Teng-Tai H (2006) PADCP: power-aware dynamic clustering protocol for wireless sensor networks
22.
Zurück zum Zitat Jeong J, Culler D, Oh J-H (2007) Empirical analysis of transmission power control algorithms for wireless sensor networks. In: 2007 Fourth International Conference on Networked Sensing Systems. IEEE, pp 27–34 Jeong J, Culler D, Oh J-H (2007) Empirical analysis of transmission power control algorithms for wireless sensor networks. In: 2007 Fourth International Conference on Networked Sensing Systems. IEEE, pp 27–34
23.
Zurück zum Zitat Cheng H, Yang S, Cao J (2013) Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Syst Appl 40(4):1381–1392CrossRef Cheng H, Yang S, Cao J (2013) Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Syst Appl 40(4):1381–1392CrossRef
24.
Zurück zum Zitat Li C, Ye M, Chen G, Wu J (2005) An energy-efficient unequal clustering mechanism for wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference. IEEE, p 8 Li C, Ye M, Chen G, Wu J (2005) An energy-efficient unequal clustering mechanism for wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference. IEEE, p 8
25.
Zurück zum Zitat Tong W, Jiyi W, He X, Jinghua Z, Munyabugingo C (2013) A cross unequal clustering routing algorithm for sensor network. Meas Sci Rev 13(4):200–205CrossRef Tong W, Jiyi W, He X, Jinghua Z, Munyabugingo C (2013) A cross unequal clustering routing algorithm for sensor network. Meas Sci Rev 13(4):200–205CrossRef
26.
Zurück zum Zitat Soro S, Heinzelman WB (2005) Prolonging the lifetime of wireless sensor networks via unequal clustering. In: 19th IEEE International Parallel and Distributed Processing Symposium. IEEE, p 8 Soro S, Heinzelman WB (2005) Prolonging the lifetime of wireless sensor networks via unequal clustering. In: 19th IEEE International Parallel and Distributed Processing Symposium. IEEE, p 8
27.
Zurück zum Zitat Jain A, Reddy B (2014) Sink as cluster head: An energy efficient clustering method for wireless sensor networks. In: 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC). IEEE, pp 1–6 Jain A, Reddy B (2014) Sink as cluster head: An energy efficient clustering method for wireless sensor networks. In: 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC). IEEE, pp 1–6
28.
Zurück zum Zitat Jiang C-J, Shi W-R, Tang X-L et al (2010) Energy-balanced unequal clustering protocol for wireless sensor networks. J China Univ Posts Telecommun 17(4):94–99CrossRef Jiang C-J, Shi W-R, Tang X-L et al (2010) Energy-balanced unequal clustering protocol for wireless sensor networks. J China Univ Posts Telecommun 17(4):94–99CrossRef
29.
Zurück zum Zitat Bagci H, Yazici A (2010) An energy aware fuzzy unequal clustering algorithm for wireless sensor networks. In: International Conference on Fuzzy Systems. IEEE, pp 1–8 Bagci H, Yazici A (2010) An energy aware fuzzy unequal clustering algorithm for wireless sensor networks. In: International Conference on Fuzzy Systems. IEEE, pp 1–8
30.
Zurück zum Zitat Liu P, Huang T-l, Zhou X-y, Wu G-x (2010) An improved energy efficient unequal clustering algorithm of wireless sensor network. In: 2010 International Conference on Intelligent Computing and Integrated Systems. IEEE, pp 930–933 Liu P, Huang T-l, Zhou X-y, Wu G-x (2010) An improved energy efficient unequal clustering algorithm of wireless sensor network. In: 2010 International Conference on Intelligent Computing and Integrated Systems. IEEE, pp 930–933
31.
Zurück zum Zitat Mao S, Zhao C, Zhou Z, Ye Y (2013) An improved fuzzy unequal clustering algorithm for wireless sensor network. Mobile Netw Appl 18:206–214CrossRef Mao S, Zhao C, Zhou Z, Ye Y (2013) An improved fuzzy unequal clustering algorithm for wireless sensor network. Mobile Netw Appl 18:206–214CrossRef
32.
Zurück zum Zitat Kaur T, Kumar D (2018) Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sens J 18(11):4614–4622CrossRef Kaur T, Kumar D (2018) Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sens J 18(11):4614–4622CrossRef
33.
Zurück zum Zitat Guiloufi ABF, Nasri N, Kachouri A (2016) An energy-efficient unequal clustering algorithm using ‘Sierpinski triangle’ for WSNs. Wireless Pers Commun 88:449–465CrossRef Guiloufi ABF, Nasri N, Kachouri A (2016) An energy-efficient unequal clustering algorithm using ‘Sierpinski triangle’ for WSNs. Wireless Pers Commun 88:449–465CrossRef
34.
Zurück zum Zitat Arjunan S, Pothula S (2019) A survey on unequal clustering protocols in wireless sensor networks. J King Saud Univ Comput Inf Sci 31(3):304–317 Arjunan S, Pothula S (2019) A survey on unequal clustering protocols in wireless sensor networks. J King Saud Univ Comput Inf Sci 31(3):304–317
35.
Zurück zum Zitat Kim J-H, Hussain CS, Yang W-C, Kim D-S, Park M-S (2008) Produce: a probability-driven unequal clustering mechanism for wireless sensor networks. IEEE, pp 928–933 Kim J-H, Hussain CS, Yang W-C, Kim D-S, Park M-S (2008) Produce: a probability-driven unequal clustering mechanism for wireless sensor networks. IEEE, pp 928–933
36.
Zurück zum Zitat Yu J, Qi Y, Wang G (2011) An energy-driven unequal clustering protocol for heterogeneous wireless sensor networks. J Control Theory Appl 9:133–139MathSciNetCrossRef Yu J, Qi Y, Wang G (2011) An energy-driven unequal clustering protocol for heterogeneous wireless sensor networks. J Control Theory Appl 9:133–139MathSciNetCrossRef
37.
Zurück zum Zitat Lee S, Choe H, Park B, Song Y, Kim C-K (2011) LUCA: an energy-efficient unequal clustering algorithm using location information for wireless sensor networks. Wireless Pers Commun 56:715–731CrossRef Lee S, Choe H, Park B, Song Y, Kim C-K (2011) LUCA: an energy-efficient unequal clustering algorithm using location information for wireless sensor networks. Wireless Pers Commun 56:715–731CrossRef
38.
Zurück zum Zitat Chen G, Li C, Ye M, Wu J (2009) An unequal cluster-based routing protocol in wireless sensor networks. Wireless Netw 15:193–207CrossRef Chen G, Li C, Ye M, Wu J (2009) An unequal cluster-based routing protocol in wireless sensor networks. Wireless Netw 15:193–207CrossRef
39.
Zurück zum Zitat Lai WK, Fan CS, Lin LY (2012) Arranging cluster sizes and transmission ranges for wireless sensor networks. Inf Sci 183(1):117–131CrossRef Lai WK, Fan CS, Lin LY (2012) Arranging cluster sizes and transmission ranges for wireless sensor networks. Inf Sci 183(1):117–131CrossRef
40.
Zurück zum Zitat Mazumdar N, Om H (2015) Coverage-aware unequal clustering algorithm for wireless sensor networks. Procedia Comput Sci 57:660–669CrossRef Mazumdar N, Om H (2015) Coverage-aware unequal clustering algorithm for wireless sensor networks. Procedia Comput Sci 57:660–669CrossRef
41.
Zurück zum Zitat Gajjar S, Talati A, Sarkar M, Dasgupta K (2015) FUCP: fuzzy based unequal clustering protocol for wireless sensor networks. In: 2015 39th National Systems Conference (NSC). IEEE, pp 1–6 Gajjar S, Talati A, Sarkar M, Dasgupta K (2015) FUCP: fuzzy based unequal clustering protocol for wireless sensor networks. In: 2015 39th National Systems Conference (NSC). IEEE, pp 1–6
42.
Zurück zum Zitat Logambigai R, Kannan A (2016) Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Netw 22:945–957CrossRef Logambigai R, Kannan A (2016) Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Netw 22:945–957CrossRef
43.
Zurück zum Zitat Baranidharan B, Santhi B (2016) DUCF: distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Appl Soft Comput 40:495–506CrossRef Baranidharan B, Santhi B (2016) DUCF: distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Appl Soft Comput 40:495–506CrossRef
44.
Zurück zum Zitat Xunli F, Feiefi D (2015) Shuffled frog leaping algorithm based unequal clustering strategy for wireless sensor networks. Appl Math Inf Sci 9(3):1415–1426 Xunli F, Feiefi D (2015) Shuffled frog leaping algorithm based unequal clustering strategy for wireless sensor networks. Appl Math Inf Sci 9(3):1415–1426
45.
Zurück zum Zitat Abo-Zahhad M, Ahmed SM, Sabor N, Sasaki S (2014) A new energy-efficient adaptive clustering protocol based on genetic algorithm for improving the lifetime and the stable period of wireless sensor networks. Int J Energy Inf Commun 5(3):47–72 Abo-Zahhad M, Ahmed SM, Sabor N, Sasaki S (2014) A new energy-efficient adaptive clustering protocol based on genetic algorithm for improving the lifetime and the stable period of wireless sensor networks. Int J Energy Inf Commun 5(3):47–72
46.
Zurück zum Zitat Pravin RA et al (2024) Stochastic cluster head selection model for energy balancing in IoT enabled heterogeneous WSN. Meas Sens 35:101282CrossRef Pravin RA et al (2024) Stochastic cluster head selection model for energy balancing in IoT enabled heterogeneous WSN. Meas Sens 35:101282CrossRef
48.
Zurück zum Zitat Chandrasekaran SK, Rajasekaran VA (2024) Energy-efficient cluster head using modified fuzzy logic with WOA and path selection using enhanced CSO in IoT-enabled smart agriculture systems. J Supercomput 80(8):11149–11190CrossRef Chandrasekaran SK, Rajasekaran VA (2024) Energy-efficient cluster head using modified fuzzy logic with WOA and path selection using enhanced CSO in IoT-enabled smart agriculture systems. J Supercomput 80(8):11149–11190CrossRef
49.
Zurück zum Zitat Gupta S, Snigdh I (2022) Leveraging data aggregation algorithm in Lora networks. J Supercomput 78(15):16861–16875CrossRef Gupta S, Snigdh I (2022) Leveraging data aggregation algorithm in Lora networks. J Supercomput 78(15):16861–16875CrossRef
50.
Zurück zum Zitat Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1(4):660–670CrossRef Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1(4):660–670CrossRef
51.
Zurück zum Zitat Junping H, Yuhui J, Liang D (2008) A time-based cluster-head selection algorithm for LEACH. In: 2008 IEEE Symposium on Computers and Communications. IEEE, pp 1172–1176 Junping H, Yuhui J, Liang D (2008) A time-based cluster-head selection algorithm for LEACH. In: 2008 IEEE Symposium on Computers and Communications. IEEE, pp 1172–1176
52.
Zurück zum Zitat Batra PK, Kant K (2016) LEACH-MAC: a new cluster head selection algorithm for wireless sensor networks. Wireless Netw 22:49–60CrossRef Batra PK, Kant K (2016) LEACH-MAC: a new cluster head selection algorithm for wireless sensor networks. Wireless Netw 22:49–60CrossRef
Metadaten
Titel
Unequal-radius clustering in WSN-based IoT networks: energy optimization and load balancing in UDCOPA protocol
verfasst von
Foudil Mir
Farid Meziane
Publikationsdatum
29.08.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 19/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06426-w