Skip to main content

2020 | OriginalPaper | Buchkapitel

12. Unified Passivity-Based Visual Control for Moving Object Tracking

verfasst von : Flavio Roberti, Juan Marcos Toibero, Jorge A. Sarapura, Víctor Andaluz, Ricardo Carelli, José María Sebastián

Erschienen in: Machine Vision and Navigation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a unified passivity-based visual servoing control structure considering a vision system mounted on the robot is presented. This controller is suitable to be applied for robotic arms, mobile robots, as well as mobile manipulators. The proposed control law makes the robot able to perform a moving target tracking in its workspace. Taking advantage of the passivity properties of the control system and considering exact knowledge of the target velocity, the asymptotic convergence of the control errors to zero is proved. Later, a robustness analysis is carried out based on L 2-gain performance, thus proving that control errors are ultimately bounded even when bounded errors exist in the estimation of the target velocity. Both numerical simulation and experimental results illustrate the performance of the algorithm in a robotic manipulator, a mobile robot, and also a mobile manipulator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Basaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., Garcia, X., Tyrsa, V. V., Rivas-Lopez, M., Hernandez-Balbuena, D., Mercorelli, P., Podrygalo, M., Gurko, A., Tabakova, I., & Starostenko, O. (2014). Optical 3D laser measurement system for navigation of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.CrossRef Basaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., Garcia, X., Tyrsa, V. V., Rivas-Lopez, M., Hernandez-Balbuena, D., Mercorelli, P., Podrygalo, M., Gurko, A., Tabakova, I., & Starostenko, O. (2014). Optical 3D laser measurement system for navigation of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.CrossRef
2.
Zurück zum Zitat Toibero, J. M., Roberti, F., & Carelli, R. (2009). Stable contour-following control of wheeled mobile robots. Robotica, 27(1), 1–12.CrossRef Toibero, J. M., Roberti, F., & Carelli, R. (2009). Stable contour-following control of wheeled mobile robots. Robotica, 27(1), 1–12.CrossRef
3.
Zurück zum Zitat Toibero, J. M., Roberti, F., Carelli, R., & Fiorini, P. (2011). Switching control approach for stable navigation of mobile robots in unknown environments. Robotics and Computer Integrated Manufacturing, 27(3), 558–568.CrossRef Toibero, J. M., Roberti, F., Carelli, R., & Fiorini, P. (2011). Switching control approach for stable navigation of mobile robots in unknown environments. Robotics and Computer Integrated Manufacturing, 27(3), 558–568.CrossRef
4.
Zurück zum Zitat Rodríguez-Quiñonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-Lopez, M., Hernandez-Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1), 24–32.CrossRef Rodríguez-Quiñonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-Lopez, M., Hernandez-Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1), 24–32.CrossRef
5.
Zurück zum Zitat Toibero, J. M., Soria, C., Roberti, F., Carelli, R., & Fiorini, P. (2009). Switching visual servoing approach for stable corridor navigation. In Proceedings of the International Conference on Advanced Robotics, Munich, Germany, 22–26 June 2009. Toibero, J. M., Soria, C., Roberti, F., Carelli, R., & Fiorini, P. (2009). Switching visual servoing approach for stable corridor navigation. In Proceedings of the International Conference on Advanced Robotics, Munich, Germany, 22–26 June 2009.
6.
Zurück zum Zitat Traslosheros, A., Sebastián, J. M., Torrijos, J., Carelli, R., & Roberti, F. (2014). Using a 3DOF parallel robot and a spherical bat to hit a Ping-Pong ball. International Journal of Advanced Robotic Systems, 11(5). https://doi.org/10.5772/58526. Traslosheros, A., Sebastián, J. M., Torrijos, J., Carelli, R., & Roberti, F. (2014). Using a 3DOF parallel robot and a spherical bat to hit a Ping-Pong ball. International Journal of Advanced Robotic Systems, 11(5). https://​doi.​org/​10.​5772/​58526.
7.
Zurück zum Zitat Weiss, L. E., Sanderson, A., & Neuman, P. (1987). Dynamic sensor-based control of robots with visual feedback. IEEE Journal of Robotics and Automation, 3(9), 404–417.CrossRef Weiss, L. E., Sanderson, A., & Neuman, P. (1987). Dynamic sensor-based control of robots with visual feedback. IEEE Journal of Robotics and Automation, 3(9), 404–417.CrossRef
8.
Zurück zum Zitat Carelli, R., De la Cruz, C., & Roberti, F. (2006). Centralized formation control of non-holonomic mobile robots. Latin American Applied Research, 36(2), 63–69. Carelli, R., De la Cruz, C., & Roberti, F. (2006). Centralized formation control of non-holonomic mobile robots. Latin American Applied Research, 36(2), 63–69.
9.
Zurück zum Zitat Gong, Z., Tao, B., Yang, H., Yin, Z., & Ding, H. (2018). An uncalibrated visual servo method based on projective homography. IEEE Transactions on Automation Science and Engineering, 15(2), 806–817.CrossRef Gong, Z., Tao, B., Yang, H., Yin, Z., & Ding, H. (2018). An uncalibrated visual servo method based on projective homography. IEEE Transactions on Automation Science and Engineering, 15(2), 806–817.CrossRef
10.
Zurück zum Zitat López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010). Visual control of vehicles using two-view geometry. Mechatronics, 20(2), 315–325.CrossRef López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010). Visual control of vehicles using two-view geometry. Mechatronics, 20(2), 315–325.CrossRef
11.
Zurück zum Zitat Carelli, R., Kelly, R., Nasisi, O. H., Soria, C., & Mut, V. (2006). Control based on perspective lines of a nonholonomic mobile robot with camera-on-board. International Journal of Control, 79, 362–371.MathSciNetCrossRef Carelli, R., Kelly, R., Nasisi, O. H., Soria, C., & Mut, V. (2006). Control based on perspective lines of a nonholonomic mobile robot with camera-on-board. International Journal of Control, 79, 362–371.MathSciNetCrossRef
12.
Zurück zum Zitat Wang, H., Guo, D., Xu, H., Chen, W., Liu, T., & Leang, K. K. (2017). Eye-in-hand tracking control of a free-floating space manipulator. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1855–1865.CrossRef Wang, H., Guo, D., Xu, H., Chen, W., Liu, T., & Leang, K. K. (2017). Eye-in-hand tracking control of a free-floating space manipulator. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1855–1865.CrossRef
13.
Zurück zum Zitat Carelli, R., Santos-Victor, J., Roberti, F., & Tosetti, S. (2006). Direct visual tracking control of remote cellular robots. Robotics and Autonomous Systems, 54(10), 805–814.CrossRef Carelli, R., Santos-Victor, J., Roberti, F., & Tosetti, S. (2006). Direct visual tracking control of remote cellular robots. Robotics and Autonomous Systems, 54(10), 805–814.CrossRef
14.
Zurück zum Zitat Taryudi, & Wang, M. S. (2017). 3D object pose estimation using stereo vision for object manipulation system. In Proceedings of the IEEE International Conference on Applied System Innovation, Sapporo, Japan, 13–17 May 2017. Taryudi, & Wang, M. S. (2017). 3D object pose estimation using stereo vision for object manipulation system. In Proceedings of the IEEE International Conference on Applied System Innovation, Sapporo, Japan, 13–17 May 2017.
15.
Zurück zum Zitat López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010). Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 58(2), 216–226.CrossRef López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010). Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 58(2), 216–226.CrossRef
16.
Zurück zum Zitat Andaluz, V., Carelli, R., Salinas, L., Toibero, J. M., & Roberti, F. (2012). Visual control with adaptive dynamical compensation for 3D target tracking by mobile manipulators. Mechatronics, 22(4), 491–502.CrossRef Andaluz, V., Carelli, R., Salinas, L., Toibero, J. M., & Roberti, F. (2012). Visual control with adaptive dynamical compensation for 3D target tracking by mobile manipulators. Mechatronics, 22(4), 491–502.CrossRef
17.
Zurück zum Zitat Roberti, F., Toibero, J. M., Soria, C., Vassallo, R., & Carelli, R. (2009). Hybrid collaborative stereo vision system for mobile robots formation. International Journal of Advanced Robotic Systems, 6(4), 257–266.CrossRef Roberti, F., Toibero, J. M., Soria, C., Vassallo, R., & Carelli, R. (2009). Hybrid collaborative stereo vision system for mobile robots formation. International Journal of Advanced Robotic Systems, 6(4), 257–266.CrossRef
18.
Zurück zum Zitat Zhang, K., Chen, J., Li, Y., & Gao, Y. (2018). Unified visual servoing tracking and regulation of wheeled mobile robots with an uncalibrated camera. IEEE/ASME Transactions on Mechatronics, 23(4), 1728–1739.CrossRef Zhang, K., Chen, J., Li, Y., & Gao, Y. (2018). Unified visual servoing tracking and regulation of wheeled mobile robots with an uncalibrated camera. IEEE/ASME Transactions on Mechatronics, 23(4), 1728–1739.CrossRef
19.
Zurück zum Zitat Fujita, M., Kawai, H., & Spong, M. W. (2007). Passivity-based dynamic visual feedback control for three dimensional target tracking: Stability and L2-gain perfomance analysis. IEEE Transactions on Control Systems Technology, 15(1), 40–52.CrossRef Fujita, M., Kawai, H., & Spong, M. W. (2007). Passivity-based dynamic visual feedback control for three dimensional target tracking: Stability and L2-gain perfomance analysis. IEEE Transactions on Control Systems Technology, 15(1), 40–52.CrossRef
20.
Zurück zum Zitat Kawai, H., Toshiyuki, M., & Fujita, M. (2006). Image-based dynamic visual feedback control via passivity approach. In Proceedings of the IEEE International Conference on Control Applications, Munich, Germany, 4–6 October 2006. Kawai, H., Toshiyuki, M., & Fujita, M. (2006). Image-based dynamic visual feedback control via passivity approach. In Proceedings of the IEEE International Conference on Control Applications, Munich, Germany, 4–6 October 2006.
21.
Zurück zum Zitat Murao, T., Kawai, H., & Fujita, M. (2005). Passivity-based dynamic visual feedback control with a movable camera. In Proceedings of the 44th IEEE International Conference on Decision and Control, Sevilla, Spain, 12–15 December 2005. Murao, T., Kawai, H., & Fujita, M. (2005). Passivity-based dynamic visual feedback control with a movable camera. In Proceedings of the 44th IEEE International Conference on Decision and Control, Sevilla, Spain, 12–15 December 2005.
22.
Zurück zum Zitat Soria, C., Roberti, F., Carelli, R., & Sebastián, J. M. (2008). Control Servo-visual de un robot manipulador planar basado en pasividad. Revista Iberoamericana de Automática e Informática Industrial, 5(4), 54–61.CrossRef Soria, C., Roberti, F., Carelli, R., & Sebastián, J. M. (2008). Control Servo-visual de un robot manipulador planar basado en pasividad. Revista Iberoamericana de Automática e Informática Industrial, 5(4), 54–61.CrossRef
23.
Zurück zum Zitat Martins, F., Sarcinelli, M., Freire Bastos, T., & Carelli, R. (2008). Dynamic modeling and trajectory tracking control for unicycle-like mobile robots. In Proceedings of the 3rd International Symposium on Multibody Systems and Mechatronics, San Juan, Argentina, 8–12 April 2008. Martins, F., Sarcinelli, M., Freire Bastos, T., & Carelli, R. (2008). Dynamic modeling and trajectory tracking control for unicycle-like mobile robots. In Proceedings of the 3rd International Symposium on Multibody Systems and Mechatronics, San Juan, Argentina, 8–12 April 2008.
24.
Zurück zum Zitat Andaluz, V., Roberti, F., Salinas, L., Toibero, J. M., & Carelli, R. (2015). Passivity-based visual feedback control with dynamic compensation of mobile manipulators: Stability and L2-gain performance analysis. Robotics and Autonomous Systems, 66, 64–74.CrossRef Andaluz, V., Roberti, F., Salinas, L., Toibero, J. M., & Carelli, R. (2015). Passivity-based visual feedback control with dynamic compensation of mobile manipulators: Stability and L2-gain performance analysis. Robotics and Autonomous Systems, 66, 64–74.CrossRef
25.
Zurück zum Zitat Morales, B., Roberti, F., Toibero, J. M., & Carelli, R. (2012). Passivity based visual servoing of mobile robots with dynamics compensation. Mechatronics, 22(4), 481–490.CrossRef Morales, B., Roberti, F., Toibero, J. M., & Carelli, R. (2012). Passivity based visual servoing of mobile robots with dynamics compensation. Mechatronics, 22(4), 481–490.CrossRef
26.
Zurück zum Zitat El-Hawwary, M. I., & Maggiore, M. (2008). Global path following for the unicycle and other results. In Proceedings of the American Control Conference, Seattle, Washington, 11–13 June 2008. El-Hawwary, M. I., & Maggiore, M. (2008). Global path following for the unicycle and other results. In Proceedings of the American Control Conference, Seattle, Washington, 11–13 June 2008.
27.
Zurück zum Zitat Lee, D. (2007). Passivity-based switching control for stabilization of wheeled mobile robots. In Proceedings of the Robotics: Science and Systems, Atlanta, Georgia, 27–30 June 2007. Lee, D. (2007). Passivity-based switching control for stabilization of wheeled mobile robots. In Proceedings of the Robotics: Science and Systems, Atlanta, Georgia, 27–30 June 2007.
28.
Zurück zum Zitat Arcak, M. (2007). Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 52(8), 1380–1390.MathSciNetCrossRef Arcak, M. (2007). Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 52(8), 1380–1390.MathSciNetCrossRef
29.
Zurück zum Zitat Igarashi, Y., Hatanaka, T., Fujita, M., & Spong, M. W. (2007). Passivity-based 3D attitude coordination: Convergence and connectivity. In Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA,10–11 December 2007. Igarashi, Y., Hatanaka, T., Fujita, M., & Spong, M. W. (2007). Passivity-based 3D attitude coordination: Convergence and connectivity. In Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA,10–11 December 2007.
30.
Zurück zum Zitat Ihle, I., Arcak, M., & Fossen, T. (2007). Passivity-based designs for synchronized path-following. Automatica, 43(9), 1508–1518.MathSciNetCrossRef Ihle, I., Arcak, M., & Fossen, T. (2007). Passivity-based designs for synchronized path-following. Automatica, 43(9), 1508–1518.MathSciNetCrossRef
31.
Zurück zum Zitat Spong, M. W., Holm, J. K., & Lee, D. J. (2007). Passivity-based control of biped locomotion. IEEE Robotics & Automation Magazine, 14(2), 30–40.CrossRef Spong, M. W., Holm, J. K., & Lee, D. J. (2007). Passivity-based control of biped locomotion. IEEE Robotics & Automation Magazine, 14(2), 30–40.CrossRef
32.
Zurück zum Zitat Fujita, M., Hatanaka, T., Kobayashi, N., Ibuki, T., & Spong, M. (2009). Visual motion observer-based pose synchronization: A passivity approach. In Proceedings of the IEEE International Conference on Decision and Control, Shanghai, China, 16–18 December 2009. Fujita, M., Hatanaka, T., Kobayashi, N., Ibuki, T., & Spong, M. (2009). Visual motion observer-based pose synchronization: A passivity approach. In Proceedings of the IEEE International Conference on Decision and Control, Shanghai, China, 16–18 December 2009.
33.
Zurück zum Zitat Kawai, H., Murao, T., & Fujita, M. (2011). Passivity-based visual motion observer with panoramic camera for pose control. Journal of Intelligent & Robotic Systems, 64(3–4), 561–583.CrossRef Kawai, H., Murao, T., & Fujita, M. (2011). Passivity-based visual motion observer with panoramic camera for pose control. Journal of Intelligent & Robotic Systems, 64(3–4), 561–583.CrossRef
34.
Zurück zum Zitat Hu, Y. M., & Guo, B. H. (2004). Modeling and motion planning of a three-link wheeled mobile manipulator. In Proceedings of the International Conference on Control, Automation, Robotics and Vision, Kunming, China, 6–9 December 2004. Hu, Y. M., & Guo, B. H. (2004). Modeling and motion planning of a three-link wheeled mobile manipulator. In Proceedings of the International Conference on Control, Automation, Robotics and Vision, Kunming, China, 6–9 December 2004.
35.
Zurück zum Zitat Andaluz, V., Roberti, F., Toibero, J. M., & Carelli, R. (2012). Adaptive unified motion control of mobile manipulators. Control Engineering Practice, 20(12), 1337–1352.CrossRef Andaluz, V., Roberti, F., Toibero, J. M., & Carelli, R. (2012). Adaptive unified motion control of mobile manipulators. Control Engineering Practice, 20(12), 1337–1352.CrossRef
36.
Zurück zum Zitat Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651–670.CrossRef Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651–670.CrossRef
37.
Zurück zum Zitat Hill, D., & Moylan, P. (1976). Stability results for nonlinear feedback systems. Automatica, 13, 373–382. Hill, D., & Moylan, P. (1976). Stability results for nonlinear feedback systems. Automatica, 13, 373–382.
38.
Zurück zum Zitat Bynes, C. I., Isidori, A., & Willems, J. C. (1991). Passivity, feedback equivalence, and the global stabilization of minimun phase nonlinear systems. IEEE Transactions on Automatic Control, 36(11), 1228–1240.MathSciNetCrossRef Bynes, C. I., Isidori, A., & Willems, J. C. (1991). Passivity, feedback equivalence, and the global stabilization of minimun phase nonlinear systems. IEEE Transactions on Automatic Control, 36(11), 1228–1240.MathSciNetCrossRef
39.
Zurück zum Zitat Ortega, R., Loria, A., Nelly, R., & Praly, L. (1995). On passivity based output feedback global stabilization of Euler-Lagrange systems. International Journal of Robust and Nonlinear Control, 5, 313–324.MathSciNetCrossRef Ortega, R., Loria, A., Nelly, R., & Praly, L. (1995). On passivity based output feedback global stabilization of Euler-Lagrange systems. International Journal of Robust and Nonlinear Control, 5, 313–324.MathSciNetCrossRef
40.
Zurück zum Zitat Vidyasagar, M. (1979). New passivity-type criteria for large-scale interconnected systems. IEEE Transactions on Automat. Control, 24, 575–579.MathSciNetCrossRef Vidyasagar, M. (1979). New passivity-type criteria for large-scale interconnected systems. IEEE Transactions on Automat. Control, 24, 575–579.MathSciNetCrossRef
41.
Zurück zum Zitat Vidyasagar, M. (1978). Nonlinear systems analysis. Englewood Cliffs, NJ: Prentice Hall International Editions.MATH Vidyasagar, M. (1978). Nonlinear systems analysis. Englewood Cliffs, NJ: Prentice Hall International Editions.MATH
42.
Zurück zum Zitat Bayle, B., & Fourquet, J. Y. (2001). Manipulability analysis for mobile manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001. Bayle, B., & Fourquet, J. Y. (2001). Manipulability analysis for mobile manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001.
43.
Zurück zum Zitat Kalata, P. (1994). The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Transactions on Aerospace and Electronic Systems, 20(2), 174–182.CrossRef Kalata, P. (1994). The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Transactions on Aerospace and Electronic Systems, 20(2), 174–182.CrossRef
44.
Zurück zum Zitat Van der Schaft, A. (2000). L2 gain and passivity techniques in nonlinear control. London: Springer.CrossRef Van der Schaft, A. (2000). L2 gain and passivity techniques in nonlinear control. London: Springer.CrossRef
45.
Zurück zum Zitat Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., & Taylor, C. J. (2002). A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 18(5), 813–825.CrossRef Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., & Taylor, C. J. (2002). A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 18(5), 813–825.CrossRef
46.
Zurück zum Zitat Zulli, R., Fierro, R., Conte, G., & Lewis, F. L. (1995). Motion planning and control for nonholonomic mobile robots. In Proceedings of the IEEE International Symposium on Intelligent Control, CA, 27–29 August 1995. Zulli, R., Fierro, R., Conte, G., & Lewis, F. L. (1995). Motion planning and control for nonholonomic mobile robots. In Proceedings of the IEEE International Symposium on Intelligent Control, CA, 27–29 August 1995.
Metadaten
Titel
Unified Passivity-Based Visual Control for Moving Object Tracking
verfasst von
Flavio Roberti
Juan Marcos Toibero
Jorge A. Sarapura
Víctor Andaluz
Ricardo Carelli
José María Sebastián
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-22587-2_12

Neuer Inhalt