Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Unifying Label Propagation and Graph Sparsification for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral image (HSI) is a branch of optical remote sensing data, which has advantages of high spectral resolution and detailed spatial structure (Zhang et al. in IEEE Trans. Cybern. 48:16–28, 2016). Among the applications in HSI processing, hyperspectral image classification (HSIC) is a fundamental yet challenging problem (Hong et al. in IEEE Trans. Geosci. Remote Sens. 58:3791–3808, 2020; Jiang et al. in IEEE Trans. Geosci. Remote Sens. 57:851–865, 2019), which aims to assign a specific label to each pixel in the image. HSIC has been widely applied to many scenarios, such as military target detection, vegetation monitoring, and disaster prevention and control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Zhang, Q. Zhang, B. Du, X. Huang, Y.Y. Tang, D. Tao, Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans. Cybern. 48(1), 16–28 (2016)CrossRef L. Zhang, Q. Zhang, B. Du, X. Huang, Y.Y. Tang, D. Tao, Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans. Cybern. 48(1), 16–28 (2016)CrossRef
2.
Zurück zum Zitat D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, X.X. Zhu, Invariant attribute profiles: a spatial-frequency joint feature extractor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 3791–3808 (2020)CrossRef D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, X.X. Zhu, Invariant attribute profiles: a spatial-frequency joint feature extractor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 3791–3808 (2020)CrossRef
3.
Zurück zum Zitat J. Jiang, J. Ma, Z. Wang, C. Chen, X. Liu, Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci. Remote Sens. 57(2), 851–865 (2019)CrossRef J. Jiang, J. Ma, Z. Wang, C. Chen, X. Liu, Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci. Remote Sens. 57(2), 851–865 (2019)CrossRef
4.
Zurück zum Zitat E. Blanzieri, F. Melgani, Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6), 1804–1811 (2008)CrossRef E. Blanzieri, F. Melgani, Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6), 1804–1811 (2008)CrossRef
5.
Zurück zum Zitat Y. Tarabalka, M. Fauvel, J. Chanussot, J.A. Benediktsson, Svm- and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRef Y. Tarabalka, M. Fauvel, J. Chanussot, J.A. Benediktsson, Svm- and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRef
6.
Zurück zum Zitat M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef
7.
Zurück zum Zitat X. Sun, Q. Qu, N.M. Nasrabadi, T.D. Tran, Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11(7), 1235–1239 (2014)CrossRef X. Sun, Q. Qu, N.M. Nasrabadi, T.D. Tran, Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11(7), 1235–1239 (2014)CrossRef
8.
Zurück zum Zitat Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyper-spectral imagery with 3d convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyper-spectral imagery with 3d convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef
9.
Zurück zum Zitat R. Hang, F. Zhou, Q. Liu, P. Ghamisi, Classification of hyper-spectral images via multitask generative adversarial networks”. IEEE Trans. Geosci. Remote Sens. 59(2), 1424–1436 (2021)CrossRef R. Hang, F. Zhou, Q. Liu, P. Ghamisi, Classification of hyper-spectral images via multitask generative adversarial networks”. IEEE Trans. Geosci. Remote Sens. 59(2), 1424–1436 (2021)CrossRef
10.
Zurück zum Zitat R. Hang, Z. Li, Q. Liu, P. Ghamisi, S.S. Bhattacharyya, “Hyperspectral image classification with attention-aided cnns. IEEE Trans. Geosci. Remote Sens. 59(3), 2281–2293 (2021)CrossRef R. Hang, Z. Li, Q. Liu, P. Ghamisi, S.S. Bhattacharyya, “Hyperspectral image classification with attention-aided cnns. IEEE Trans. Geosci. Remote Sens. 59(3), 2281–2293 (2021)CrossRef
11.
Zurück zum Zitat J. Bai, B. Ding, Z. Xiao, L. Jiao, H. Chen, A.C. Regan, Hyper-spectral image classification based on deep attention graph convolutional network. IEEE Trans. Geosci. Remote Sens. 54, 1–16 (2021) J. Bai, B. Ding, Z. Xiao, L. Jiao, H. Chen, A.C. Regan, Hyper-spectral image classification based on deep attention graph convolutional network. IEEE Trans. Geosci. Remote Sens. 54, 1–16 (2021)
12.
Zurück zum Zitat A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2019)CrossRef A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2019)CrossRef
13.
Zurück zum Zitat D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, B. Zhang, More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59(5), 4340–4354 (2021)CrossRef D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, B. Zhang, More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59(5), 4340–4354 (2021)CrossRef
14.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Y. Zhan, Semi-supervised locality preserving dense graph neural network with arma filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 32, 1–12 (2021) Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Y. Zhan, Semi-supervised locality preserving dense graph neural network with arma filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 32, 1–12 (2021)
15.
Zurück zum Zitat D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2021)CrossRef D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2021)CrossRef
16.
Zurück zum Zitat Q. Liu, L. Xiao, J. Yang, Z. Wei, “Cnn-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(10), 8657–8671 (2021)CrossRef Q. Liu, L. Xiao, J. Yang, Z. Wei, “Cnn-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(10), 8657–8671 (2021)CrossRef
17.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef
18.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef
19.
Zurück zum Zitat Q. Liu, L. Xiao, J. Yang, Z. Wei, Multilevel superpixel structured graph u-nets for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 65, 1–15 (2021) Q. Liu, L. Xiao, J. Yang, Z. Wei, Multilevel superpixel structured graph u-nets for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 65, 1–15 (2021)
20.
Zurück zum Zitat H. Wang, J. Leskovec, Unifying graph convolutional neural networks and label propagation (2020) H. Wang, J. Leskovec, Unifying graph convolutional neural networks and label propagation (2020)
21.
Zurück zum Zitat Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, in Thirty-Second AAAI Conference on Artificial Intelligence (2018) Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, in Thirty-Second AAAI Conference on Artificial Intelligence (2018)
22.
Zurück zum Zitat J. Jiang, J. Ma, X. Liu, Multilayer spectral–spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 839–852 (2022)CrossRef J. Jiang, J. Ma, X. Liu, Multilayer spectral–spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 839–852 (2022)CrossRef
23.
Zurück zum Zitat S. Jia, X. Deng, M. Xu, J. Zhou, X. Jia, Superpixel-level weighted label propagation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(7), 5077–5091 (2020)CrossRef S. Jia, X. Deng, M. Xu, J. Zhou, X. Jia, Superpixel-level weighted label propagation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(7), 5077–5091 (2020)CrossRef
24.
Zurück zum Zitat T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks (2016) T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks (2016)
25.
Zurück zum Zitat Zheng, Cheng, et al. Robust graph representation learning via neural sparsification. In International Conference on Machine Learning. PMLR (2020) Zheng, Cheng, et al. Robust graph representation learning via neural sparsification. In International Conference on Machine Learning. PMLR (2020)
26.
Zurück zum Zitat C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyper-spectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyper-spectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef
27.
Zurück zum Zitat L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef
Metadaten
Titel
Unifying Label Propagation and Graph Sparsification for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_6