Skip to main content
Erschienen in: Pattern Analysis and Applications 3/2019

10.09.2018 | Theoretical Advances

Unifying the skeletonization methods via modifying images

verfasst von: Ali Tavakoli, Davod Farazmanesh

Erschienen in: Pattern Analysis and Applications | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To date, several methods have been presented for generating a skeleton from a binary image. Two prominent properties of a suitable skeleton are one-pixel width and high percentage of reconstruction. Accordingly, the binary objects can be classified into two classes. An object is in the first class iff it is possible to generate a skeleton which involves the preceding prominent properties. For the objects contained in this class, under the same circumstances all known skeletonization methods extract such a skeleton. The other objects are in the second class. In other words, for each object in the second class, the skeletonization methods cannot generate a skeleton which contains two preceding properties simultaneously. For example, the objects involving even-pixel width are in the second class. This deficiency goes back to the inherent discrete nature of digital objects. In this article, to overcome this deficiency, first we pad some pixels into the original image by a specific approach to produce a modified image. The modified image always lies in the first class (even if the original image is in the second class). Now, applying the skeletonization methods on the modified image extracts a suitable skeleton for the original image which contains one-pixel width and high percentage of reconstruction. We also present a novel skeletonization method based on a unique property called “critical point” that is defined by the directional derivative of distance function. The complexity of our proposed method applied on the modified images is less than the other known methods applied on the original images. Finally, we suggest some algorithms for reconstruction, erosion, dilation and pruning of an image via the given skeleton. The implementation of these algorithms is straightforward.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This dataset consists of 1400 silhouette images from 70 classes, and each class has 20 shapes.
 
Literatur
1.
Zurück zum Zitat Arcelli C, Di Baja GS (1992) Ridge points in euclidean distance maps. Pattern Recognit Lett 1:237–243CrossRef Arcelli C, Di Baja GS (1992) Ridge points in euclidean distance maps. Pattern Recognit Lett 1:237–243CrossRef
2.
Zurück zum Zitat Arcelli C, Di Baja GS (1993) Euclidean skeleton via centre-of-maximal-disc extraction. Image Vis Comput 11(3):163–173CrossRef Arcelli C, Di Baja GS (1993) Euclidean skeleton via centre-of-maximal-disc extraction. Image Vis Comput 11(3):163–173CrossRef
3.
Zurück zum Zitat Beristain A, Grana M, Gonzalez AI (2012) A Pruning Algorithm for Stable Voronoi Skeletons. J Math Imaging Vis 42(2):225–237MathSciNetMATHCrossRef Beristain A, Grana M, Gonzalez AI (2012) A Pruning Algorithm for Stable Voronoi Skeletons. J Math Imaging Vis 42(2):225–237MathSciNetMATHCrossRef
4.
Zurück zum Zitat Blum H (1967) A transformation for extractingn new descriptors of shape. Models Percept Speech Vis Form 19:362–380 Blum H (1967) A transformation for extractingn new descriptors of shape. Models Percept Speech Vis Form 19:362–380
5.
Zurück zum Zitat Blum H, Nagel RN (1978) Shape description using weighted symmetric axis features. Pattern Recognit 10(3):167–180MATHCrossRef Blum H, Nagel RN (1978) Shape description using weighted symmetric axis features. Pattern Recognit 10(3):167–180MATHCrossRef
6.
Zurück zum Zitat Borgefors G (1986) Distance transformations in digital images. Comput Vis Gr 34:344–371CrossRef Borgefors G (1986) Distance transformations in digital images. Comput Vis Gr 34:344–371CrossRef
7.
Zurück zum Zitat Couprie M, Coeurjolly D, Zrour R (2007) Discrete bisector function and Euclidean skeleton in 2D and 3D. Image Vis Comput 25:1543–1556CrossRef Couprie M, Coeurjolly D, Zrour R (2007) Discrete bisector function and Euclidean skeleton in 2D and 3D. Image Vis Comput 25:1543–1556CrossRef
8.
Zurück zum Zitat Ćurića V, Landströmb A, Thurleyb MJ, Hendriksa CLL, (2014) Adaptive mathematical morphology-a survey of the field. Pattern Recogn Lett 47(1):18–28 Ćurića V, Landströmb A, Thurleyb MJ, Hendriksa CLL, (2014) Adaptive mathematical morphology-a survey of the field. Pattern Recogn Lett 47(1):18–28
11.
Zurück zum Zitat Hesselink WH, Roerdink JBTM (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal 30(12):2204–2217CrossRef Hesselink WH, Roerdink JBTM (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal 30(12):2204–2217CrossRef
12.
Zurück zum Zitat Hirata T (1996) A unified linear-time algorithm for computing distance maps. J Math Imaging Vis 58:129–133MathSciNetMATH Hirata T (1996) A unified linear-time algorithm for computing distance maps. J Math Imaging Vis 58:129–133MathSciNetMATH
13.
Zurück zum Zitat Jalba AC, Sobiecki A, Telea AC (2016) An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans Pattern Anal 38(1):30–45CrossRef Jalba AC, Sobiecki A, Telea AC (2016) An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans Pattern Anal 38(1):30–45CrossRef
14.
15.
Zurück zum Zitat Lam L, Lee SW, Suen CY (1992) Thinning methodologies-a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885CrossRef Lam L, Lee SW, Suen CY (1992) Thinning methodologies-a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885CrossRef
16.
Zurück zum Zitat Latecki LJ, Lakamper R, Eckhardt U (2000) Shape descriptors for nonrigid shapes with a single closed contour. In: Proceedings of the IEEE computer vision and pattern recognition, Madison, USA, 424429 Latecki LJ, Lakamper R, Eckhardt U (2000) Shape descriptors for nonrigid shapes with a single closed contour. In: Proceedings of the IEEE computer vision and pattern recognition, Madison, USA, 424429
17.
Zurück zum Zitat Liu H, Wua ZH, Zhang X, Hsu DF (2013) A skeleton pruning algorithm based on information fusion. Pattern Recognit Lett 34(10):1138–1145CrossRef Liu H, Wua ZH, Zhang X, Hsu DF (2013) A skeleton pruning algorithm based on information fusion. Pattern Recognit Lett 34(10):1138–1145CrossRef
18.
Zurück zum Zitat Maurer CR Jr., Raghavan V, Qi R (2001) A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In: Information processing in medical imaging, pp 358–364 Maurer CR Jr., Raghavan V, Qi R (2001) A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In: Information processing in medical imaging, pp 358–364
19.
Zurück zum Zitat Maurer CR Jr, Qi R, Raghavan V (2003) A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. IEEE Trans Pattern Anal 25(2):265–270CrossRef Maurer CR Jr, Qi R, Raghavan V (2003) A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. IEEE Trans Pattern Anal 25(2):265–270CrossRef
20.
Zurück zum Zitat Meijster A, Roerdink JBTM, Hesselink WH (2000) A general algorithm for computing distance transforms in linear time. In: Goutsias J, Vincent L, Bloomberg DS (eds) Mathematical morphology and its applications to image and signal processing. Kluwer Academic, Dordrecht, pp 331–340 Meijster A, Roerdink JBTM, Hesselink WH (2000) A general algorithm for computing distance transforms in linear time. In: Goutsias J, Vincent L, Bloomberg DS (eds) Mathematical morphology and its applications to image and signal processing. Kluwer Academic, Dordrecht, pp 331–340
21.
Zurück zum Zitat Saha PK, Borgefors G, Baja GS (2016) A survey on skeletonization algorithms and their applications. Pattern Recognit Lett 76(1):3–12CrossRef Saha PK, Borgefors G, Baja GS (2016) A survey on skeletonization algorithms and their applications. Pattern Recognit Lett 76(1):3–12CrossRef
22.
Zurück zum Zitat Saúde AV, Couprie M, Lotufo RA, (2009) Discrete 2D and 3D euclidean medial axis in higher resolution. Image Vis Comput 27:354–363 Saúde AV, Couprie M, Lotufo RA, (2009) Discrete 2D and 3D euclidean medial axis in higher resolution. Image Vis Comput 27:354–363
23.
Zurück zum Zitat Serinoa L, Baja GS (2016) A new strategy for skeleton pruning. Pattern Recognit Lett 76(1):41–48CrossRef Serinoa L, Baja GS (2016) A new strategy for skeleton pruning. Pattern Recognit Lett 76(1):41–48CrossRef
24.
Zurück zum Zitat Siddiqi K, Bouix S, Tannenbaum A, Zucker S (2002) Hamilton–Jacobi skeletons. Int J Comput 48(3):215–231MATH Siddiqi K, Bouix S, Tannenbaum A, Zucker S (2002) Hamilton–Jacobi skeletons. Int J Comput 48(3):215–231MATH
25.
Zurück zum Zitat Shih FY, Pu CC (1995) A skeletonization algorithm by maxima tracking on euclidean distance transform. Pattern Recognit 28(3):331–341CrossRef Shih FY, Pu CC (1995) A skeletonization algorithm by maxima tracking on euclidean distance transform. Pattern Recognit 28(3):331–341CrossRef
26.
Zurück zum Zitat Shih FYC, Mitchell OR (1992) A mathematical morphology approach distance transformation. IEEE Trans Image Process I(2):197–204CrossRef Shih FYC, Mitchell OR (1992) A mathematical morphology approach distance transformation. IEEE Trans Image Process I(2):197–204CrossRef
27.
Zurück zum Zitat Strzodka R, Telea A (2004) Generalized distance transforms and skeletons in graphics hardware. In: Proceedings of the eurographics IEEE TCVG symposium visualization, pp 221–230 Strzodka R, Telea A (2004) Generalized distance transforms and skeletons in graphics hardware. In: Proceedings of the eurographics IEEE TCVG symposium visualization, pp 221–230
28.
Zurück zum Zitat Wright MW, Cipolla R, Giblin PJ (1995) keletonization using an extended Euclidean distance transform. Image Vis Comput 13(5):367–375CrossRef Wright MW, Cipolla R, Giblin PJ (1995) keletonization using an extended Euclidean distance transform. Image Vis Comput 13(5):367–375CrossRef
29.
Zurück zum Zitat Wu QJ, Bourland JD (2000) Three-dimensional skeletonization for computer-assisted treatment planning in radiosurgery. Comput Med Imagaing Gr 24(4):243–251CrossRef Wu QJ, Bourland JD (2000) Three-dimensional skeletonization for computer-assisted treatment planning in radiosurgery. Comput Med Imagaing Gr 24(4):243–251CrossRef
30.
Zurück zum Zitat Yan T-Q, Zhou C-X (2012) A continuous skeletonization method based on distance transform. ICIC 304:251–258 Yan T-Q, Zhou C-X (2012) A continuous skeletonization method based on distance transform. ICIC 304:251–258
31.
Zurück zum Zitat Zhong Y, Wan Y, Yao L (2010) Skeletonization by multiple scan order. In: IEEE Zhong Y, Wan Y, Yao L (2010) Skeletonization by multiple scan order. In: IEEE
32.
Zurück zum Zitat Chen W, Sui L, Xu Z, Lang Y (2012) Improved Zhang–Suen thinning algorithm in binary line drawing applications. In: International conference on systems and informatics (ICSAI 2012), Yantai, China, 1947–1950 Chen W, Sui L, Xu Z, Lang Y (2012) Improved Zhang–Suen thinning algorithm in binary line drawing applications. In: International conference on systems and informatics (ICSAI 2012), Yantai, China, 1947–1950
33.
Zurück zum Zitat Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27(3):236–239CrossRef Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27(3):236–239CrossRef
Metadaten
Titel
Unifying the skeletonization methods via modifying images
verfasst von
Ali Tavakoli
Davod Farazmanesh
Publikationsdatum
10.09.2018
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 3/2019
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-018-0751-y

Weitere Artikel der Ausgabe 3/2019

Pattern Analysis and Applications 3/2019 Zur Ausgabe