Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.12.2019 | Focus | Ausgabe 15/2020

Soft Computing 15/2020

Unifying user similarity and social trust to generate powerful recommendations for smart cities using collaborating filtering-based recommender systems

Zeitschrift:
Soft Computing > Ausgabe 15/2020
Autoren:
Mubbashir Ayub, Mustansar Ali Ghazanfar, Zahid Mehmood, Khaled H. Alyoubi, Ahmed S. Alfakeeh
Wichtige Hinweise
Communicated by Miltiadis D. Lytras.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recommender systems can improve the quality of life in smart cities by presenting personalized services to the community. Such systems maintain a database of user profiles for producing recommendations for a specific user. The collaborative filtering (CF) approach used in these systems has become a benchmark approach for generating recommendations for interested users because it can provide “out of the box” solutions. These CF-based approaches first construct a user–item rating matrix and then exploit similarity methods. These approaches suffer from scalability, sparsity, and cold user conditions, which consequently result in the poor recommendation accuracy of these systems. To enhance the accuracy of recommender systems, social trust can play a vital role because people tend to interact with a system or respond positively to recommendations that originate from their social trustworthy friends. The proposed unified approach of this article uses explicit trust, implicit trust, and user preference similarity to create a unified rating profile for the target user to produce more powerful and accurate recommendations. The proposed unified approach also enhances the recommendation performance of CF-based recommender systems when only a limited set of ratings is available. Experiments are performed on three publicly available datasets which are FilmTrust, CiaoDVD, and Epinions. Comparison of obtained results is made with traditional similarity measures as well as up-to-date trust-based approaches. The results show that the proposed unified approach is superior to existing approaches in terms of both predictive and classification-based accuracy measures.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 15/2020

Soft Computing 15/2020 Zur Ausgabe

Premium Partner

    Bildnachweise