Skip to main content

2014 | OriginalPaper | Buchkapitel

Unitary Representations of Unitary Groups

verfasst von : Karl-Hermann Neeb

Erschienen in: Developments and Retrospectives in Lie Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we review and streamline some results of Kirillov, Olshanski and Pickrell on unitary representations of the unitary group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})\) of a real, complex or quaternionic separable Hilbert space and the subgroup \(\mathop{\mathrm{U}}\nolimits _{\infty }(\mathcal{H})\), consisting of those unitary operators g for which g1 is compact. The Kirillov–Olshanski theorem on the continuous unitary representations of the identity component \(\mathop{\mathrm{U}}\nolimits _{\infty }(\mathcal{H})_{0}\) asserts that they are direct sums of irreducible ones which can be realized in finite tensor products of a suitable complex Hilbert space. This is proved and generalized to inseparable spaces. These results are carried over to the full unitary group by Pickrell’s theorem, asserting that the separable unitary representations of \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})\), for a separable Hilbert space \(\mathcal{H}\), are uniquely determined by their restriction to \(\mathop{\mathrm{U}}\nolimits _{\infty }(\mathcal{H})_{0}\). For the 10 classical infinite rank symmetric pairs (G, K) of non-unitary type, such as \((\mathop{\mathrm{GL}}\nolimits (\mathcal{H}),\mathop{\mathrm{U}}\nolimits (\mathcal{H}))\), we also show that all separable unitary representations are trivial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Actually this group is connected for \(\mathbb{K} = \mathbb{C},\mathbb{H}\) [Ne02, Cor. II.15].
 
2
For \(\mathbb{K} = \mathbb{C},\mathbb{H}\) , the condition \(2\mathop{ \mathrm{dim}}\nolimits \mathcal{F}\leq \mathop{\mathrm{dim}}\nolimits \mathcal{H}\) is sufficient.
 
3
Our assumption implies that \(\mathop{\mathrm{dim}}\nolimits \mathcal{H}\geq 2\). This claim follows from the case where \(\mathcal{H} = \mathbb{K}^{2}\). Using the diagonal inclusion \(\mathop{\mathrm{U}}\nolimits (1,\mathbb{K})^{2}\hookrightarrow \mathop{ \mathrm{U}}\nolimits (2,\mathbb{K})\), it suffices to consider vectors with real entries, which reduces the problem to the transitivity of the action of \(\mathop{\mathrm{SO}}\nolimits (2,\mathbb{R})\) on the unit circle. Since the trivial group \(\mathop{\mathrm{SO}}\nolimits (1,\mathbb{R})\) does not act transitively on \(\mathbb{S}^{0} =\{ \pm 1\}\), it is here where we need that \(2\mathop{ \mathrm{dim}}\nolimits \mathcal{F} <\mathop{ \mathrm{dim}}\nolimits \mathcal{H}\).
 
4
This follows from the fact that \(\mathop{\mathrm{U}}\nolimits _{\infty }(\mathcal{H})_{0}\) acts transitively on the finite orthonormal systems in \(\mathcal{H}\).
 
5
This argument simplifies Pickrell’s argument that was based on the simplicity of the topological group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})/\mathbb{T}\mathop{\mathrm{U}}\nolimits _{\infty }(\mathcal{H})\) [Ka52].
 
Literatur
[AH78]
Zurück zum Zitat Albeverio, S., and R. J. Høegh-Krohn, The energy representation of Sobolev–Lie groups, Compositio Math. 36:1 (1978), 37–51. Albeverio, S., and R. J. Høegh-Krohn, The energy representation of Sobolev–Lie groups, Compositio Math. 36:1 (1978), 37–51.
[BN12]
Zurück zum Zitat Beltiţă, D., and K.-H. Neeb, Schur–Weyl Theory for C ∗ -algebras, Math. Nachrichten 285:10 (2012), 1170–1198. Beltiţă, D., and K.-H. Neeb, Schur–Weyl Theory for C -algebras, Math. Nachrichten 285:10 (2012), 1170–1198.
[BCR84]
Zurück zum Zitat Berg, C., J.P.R. Christensen, and P. Ressel, Harmonic analysis on semigroups, Graduate Texts in Math., Springer Verlag, Berlin, Heidelberg, New York, 1984.CrossRefMATH Berg, C., J.P.R. Christensen, and P. Ressel, Harmonic analysis on semigroups, Graduate Texts in Math., Springer Verlag, Berlin, Heidelberg, New York, 1984.CrossRefMATH
[Bou98]
Zurück zum Zitat Bourbaki, N., Topology: Chaps.  1 – 4, Springer-Verlag, Berlin, 1998. Bourbaki, N., Topology: Chaps.  1 4, Springer-Verlag, Berlin, 1998.
[Boy80]
Zurück zum Zitat Boyer, R., Representations of the Hilbert Lie group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344.MATHMathSciNet Boyer, R., Representations of the Hilbert Lie group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344.MATHMathSciNet
[Boy84]
Zurück zum Zitat Boyer, R., Projective representations of the Hilbert Lie group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})_{2}\) via quasifree states on the CAR algebra, J. Funct. Anal. 55 (1984), 277–296.CrossRefMathSciNet Boyer, R., Projective representations of the Hilbert Lie group \(\mathop{\mathrm{U}}\nolimits (\mathcal{H})_{2}\) via quasifree states on the CAR algebra, J. Funct. Anal. 55 (1984), 277–296.CrossRefMathSciNet
[Boy93]
Zurück zum Zitat Boyer, R., Representation theory of infinite dimensional unitary groups, Contemp. Math. 145 (1993), Americ. Math. Soc., 381–391. Boyer, R., Representation theory of infinite dimensional unitary groups, Contemp. Math. 145 (1993), Americ. Math. Soc., 381–391.
[Dix64]
Zurück zum Zitat Dixmier, J., Les C ∗ -algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Dixmier, J., Les C -algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
[Dix69]
Zurück zum Zitat Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969.MATH Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969.MATH
[FF57]
Zurück zum Zitat Feldmann, J., and J. M. G. Fell, Separable representations of rings of operators, Ann. of Math. 65 (1957), 241–249.CrossRefMathSciNet Feldmann, J., and J. M. G. Fell, Separable representations of rings of operators, Ann. of Math. 65 (1957), 241–249.CrossRefMathSciNet
[GGV80]
Zurück zum Zitat Gelfand, I. M., Graev, M. I., and A. M. Vershik, Representations of the group of functions taking values in a compact Lie group, Compositio Math. 42:2 (1980), 217–243. Gelfand, I. M., Graev, M. I., and A. M. Vershik, Representations of the group of functions taking values in a compact Lie group, Compositio Math. 42:2 (1980), 217–243.
[Gl03]
Zurück zum Zitat Glöckner, H., Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), 1–26.MATH Glöckner, H., Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), 1–26.MATH
[dlH72]
Zurück zum Zitat de la Harpe, P., Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972. de la Harpe, P., Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972.
[JN13]
Zurück zum Zitat Janssens, B., and K.-H. Neeb, Norm continuous unitary representations of Lie algebras of smooth sections, arXiv:math.RT:1302.2535. Janssens, B., and K.-H. Neeb, Norm continuous unitary representations of Lie algebras of smooth sections, arXiv:math.RT:1302.2535.
[Ka97]
Zurück zum Zitat Kaup, W., On real Cartan factors, manuscripta math. 92 (1997), 191–222. Kaup, W., On real Cartan factors, manuscripta math. 92 (1997), 191–222.
[Ke78]
Zurück zum Zitat Kehlet, E. T., Disintegration theory on a constant field of nonseparable Hilbert spaces, Math. Scand. 43:2 (1978), 353–362 Kehlet, E. T., Disintegration theory on a constant field of nonseparable Hilbert spaces, Math. Scand. 43:2 (1978), 353–362
[Ki73]
Zurück zum Zitat Kirillov, A. A., Representation of the infinite-dimensional unitary group, Dokl. Akad. Nauk. SSSR 212 (1973), 288–290.MathSciNet Kirillov, A. A., Representation of the infinite-dimensional unitary group, Dokl. Akad. Nauk. SSSR 212 (1973), 288–290.MathSciNet
[La99]
Zurück zum Zitat Lang, S., Math Talks for Undergraduates, Springer-Verlag, 1999. Lang, S., Math Talks for Undergraduates, Springer-Verlag, 1999.
[Ma97]
Zurück zum Zitat Mayer, M., Asymptotics of matrix coefficients and closures of Fourier Stieltjes algebras, J. Funct. Anal. 143 (1997), 42–54.CrossRefMATHMathSciNet Mayer, M., Asymptotics of matrix coefficients and closures of Fourier Stieltjes algebras, J. Funct. Anal. 143 (1997), 42–54.CrossRefMATHMathSciNet
[MN13]
Zurück zum Zitat Merigon, S., and K.-H. Neeb, Semibounded representations of groups of maps with values in infinite-dimensional hermitian groups, in preparation. Merigon, S., and K.-H. Neeb, Semibounded representations of groups of maps with values in infinite-dimensional hermitian groups, in preparation.
[Mi89]
[Ne98]
Zurück zum Zitat Neeb, K.-H., Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171–222.MATHMathSciNet Neeb, K.-H., Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171–222.MATHMathSciNet
[Ne00]
Zurück zum Zitat Neeb, K.-H., Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000. Neeb, K.-H., Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000.
[Ne02]
Zurück zum Zitat Neeb, K.-H., Classical Hilbert–Lie groups, their extensions and their homotopy groups, in Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Eds. A. Strasburger et al., Banach Center Publications 55, Warszawa 2002; 87–151. Neeb, K.-H., Classical Hilbert–Lie groups, their extensions and their homotopy groups, in Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Eds. A. Strasburger et al., Banach Center Publications 55, Warszawa 2002; 87–151.
[Ne04]
Zurück zum Zitat Neeb, K.-H., Infinite dimensional Lie groups and their representations, in Lie Theory: Lie Algebras and Representations, Progress in Math. 228, Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, 2004; 213–328. Neeb, K.-H., Infinite dimensional Lie groups and their representations, in Lie Theory: Lie Algebras and Representations, Progress in Math. 228, Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, 2004; 213–328.
[Ne12]
Zurück zum Zitat Neeb, K.-H., Semibounded representations of hermitian Lie groups, Travaux mathematiques 21 (2012), 29–109.MathSciNet Neeb, K.-H., Semibounded representations of hermitian Lie groups, Travaux mathematiques 21 (2012), 29–109.MathSciNet
[Ne13]
Zurück zum Zitat Neeb, K.-H., Projective semibounded representations of doubly extended Hilbert–Lie groups, in preparation. Neeb, K.-H., Projective semibounded representations of doubly extended Hilbert–Lie groups, in preparation.
[Ne13b]
Zurück zum Zitat Neeb, K.-H., Holomorphic realization of unitary representations of Banach–Lie groups, Lie Groups: Structure, Actions, and Representations– In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday, Huckleberry, A., Penkov, I., Zuckerman, G. (Eds.), Progress in Mathematics 306 (2013), 185–223. Neeb, K.-H., Holomorphic realization of unitary representations of Banach–Lie groups, Lie Groups: Structure, Actions, and Representations– In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday, Huckleberry, A., Penkov, I., Zuckerman, G. (Eds.), Progress in Mathematics 306 (2013), 185–223.
[NO13]
Zurück zum Zitat Neeb, K.-H., and G. Olafsson, Reflection positive one-parameter groups and dilations, preprint, arXiv:math.RT.1312.6161. Complex analysis and operator theory, to appear. Neeb, K.-H., and G. Olafsson, Reflection positive one-parameter groups and dilations, preprint, arXiv:math.RT.1312.6161. Complex analysis and operator theory, to appear.
[Ol78]
Zurück zum Zitat Olshanski, G. I., Unitary representations of the infinite-dimensional classical groups \(\mathop{\mathrm{U}}\nolimits (p,\,\infty )\), \(\mathop{\mathrm{SO}}\nolimits _{0}(p,\infty )\), \(\mathop{\mathrm{Sp}}\nolimits (p,\,\infty )\), and of the corresponding motion groups, Functional Anal. Appl. 12:3 (1978), 185–195. Olshanski, G. I., Unitary representations of the infinite-dimensional classical groups \(\mathop{\mathrm{U}}\nolimits (p,\,\infty )\), \(\mathop{\mathrm{SO}}\nolimits _{0}(p,\infty )\), \(\mathop{\mathrm{Sp}}\nolimits (p,\,\infty )\), and of the corresponding motion groups, Functional Anal. Appl. 12:3 (1978), 185–195.
[Ol84]
Zurück zum Zitat Olshanski, G. I., Infinite-dimensional classical groups of finite \(\mathbb{R}\) -rank: description of representations and asymptotic properties, Functional Anal. Appl. 18:1 (1984), 22–34. Olshanski, G. I., Infinite-dimensional classical groups of finite \(\mathbb{R}\) -rank: description of representations and asymptotic properties, Functional Anal. Appl. 18:1 (1984), 22–34.
[Ol89]
Zurück zum Zitat Olshanski, G. I., The method of holomorphic extension in the theory of unitary representations of infinite-dimensional classical groups, Funct. Anal. Appl. 22 (1989), 273–285.CrossRef Olshanski, G. I., The method of holomorphic extension in the theory of unitary representations of infinite-dimensional classical groups, Funct. Anal. Appl. 22 (1989), 273–285.CrossRef
[Ol90]
Zurück zum Zitat Olshanski, G. I., Unitary representations of infinite-dimensional (G, K)-pairs and the formalism of R. Howe, in Representations of Lie Groups and Related Topics, Eds. A. M. Vershik and D. P. Zhelobenko, Advanced Studies in Contemp. Math. 7, Gordon and Breach Science Publ., 1990. Olshanski, G. I., Unitary representations of infinite-dimensional (G, K)-pairs and the formalism of R. Howe, in Representations of Lie Groups and Related Topics, Eds. A. M. Vershik and D. P. Zhelobenko, Advanced Studies in Contemp. Math. 7, Gordon and Breach Science Publ., 1990.
[Pi88]
Zurück zum Zitat Pickrell, D., The separable representations of \(U(\mathcal{H})\), Proc. of the Amer. Math. Soc. 102 (1988), 416–420.MATHMathSciNet Pickrell, D., The separable representations of \(U(\mathcal{H})\), Proc. of the Amer. Math. Soc. 102 (1988), 416–420.MATHMathSciNet
[Pi89]
Zurück zum Zitat Pickrell, D., On the Mickelsson–Faddeev extension and unitary representations, Comm. Math. Phys. 123:4 (1989), 617–625. Pickrell, D., On the Mickelsson–Faddeev extension and unitary representations, Comm. Math. Phys. 123:4 (1989), 617–625.
[Pi90]
Zurück zum Zitat Pickrell, D., Separable representations for automorphism groups of infinite symmetric spaces, J. Funct. Anal. 90:1 (1990), 1–26. Pickrell, D., Separable representations for automorphism groups of infinite symmetric spaces, J. Funct. Anal. 90:1 (1990), 1–26.
[PS86]
Zurück zum Zitat Pressley, A., and G. Segal, Loop Groups, Oxford University Press, Oxford, 1986.MATH Pressley, A., and G. Segal, Loop Groups, Oxford University Press, Oxford, 1986.MATH
[PW52]
[Ru73]
Zurück zum Zitat Rudin, W., Functional Analysis, McGraw Hill, 1973. Rudin, W., Functional Analysis, McGraw Hill, 1973.
[Sa71]
Zurück zum Zitat Sakai, S., C ∗-algebras and W ∗-algebras, Ergebnisse der Math. und ihrer Grenzgebiete 60, Springer-Verlag, Berlin, Heidelberg, New York, 1971. Sakai, S., C -algebras and W -algebras, Ergebnisse der Math. und ihrer Grenzgebiete 60, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
[Sch60]
Zurück zum Zitat Schue, J. R., Hilbert space methods in the theory of Lie algebras, Transactions of the Amer. Math. Soc. 95 (1960), 69–80.CrossRefMATHMathSciNet Schue, J. R., Hilbert space methods in the theory of Lie algebras, Transactions of the Amer. Math. Soc. 95 (1960), 69–80.CrossRefMATHMathSciNet
[Se57]
Zurück zum Zitat Segal, I.E., The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 81 (1957), 197–203.CrossRef Segal, I.E., The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 81 (1957), 197–203.CrossRef
[SV75]
Zurück zum Zitat Strătilă, Ş., and D. Voiculescu, Representations of AF-algebras and of the Group U(∞), Lecture Notes in Mathematics, Vol. 486. Springer-Verlag, Berlin - New York, 1975. Strătilă, Ş., and D. Voiculescu, Representations of AF-algebras and of the Group U(), Lecture Notes in Mathematics, Vol. 486. Springer-Verlag, Berlin - New York, 1975.
[Ta60]
Zurück zum Zitat Takesaki, M., On the non-separability of singular representations of operator algebra, Kodai Math. Sem. Rep. 12 (1960), 102–108.MATHMathSciNet Takesaki, M., On the non-separability of singular representations of operator algebra, Kodai Math. Sem. Rep. 12 (1960), 102–108.MATHMathSciNet
Metadaten
Titel
Unitary Representations of Unitary Groups
verfasst von
Karl-Hermann Neeb
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-09934-7_8