Skip to main content

2012 | OriginalPaper | Buchkapitel

15. Unprotected Transients

verfasst von : John Sackett

Erschienen in: Fast Spectrum Reactors

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As indicated in the two previous chapters, there are several features that combine to make a SFR system safe and reliable. Only when a major off-normal condition is encountered, combined with a postulated failure of the Plant Protective System (PPS), can serious accident consequences be predicted. Even then, it has been demonstrated that a properly designed SFR can survive unprotected transients without damage to the fuel or other barriers to radiation release.
With this background, it is useful to address accidents in three categories as follows:
Protected transients. An event initiator occurs, such as a component failure, failure of a safety grade system (other than the reactor PPS), or an external event, followed by activation of the plant protection system to shut down the reactor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is conceivable that inherent passive safety features can be classified as a passive alternate to the PPS and can therefore reduce the number of unprotected accidents that must be considered. Such events can be classified as “accommodated” transients as the plant and fuel system design features are adequate to mitigate the consequences of the event initiator without actuation of the PPS. Such classification is very specific to the plant and fuel system design, and is not addressed here.
 
2
As noted later in this section, these phenomena are the key inherent reactivity feedback mechanisms to compensate for changes in core power and temperature during transient conditions. They are the primary mechanisms for reactivity control at the designers’ disposal when incorporating inherent passive safety features into SFR designs.
 
Literatur
1.
Zurück zum Zitat R. Wigeland, and J. Cahalan, “Mitigation of Severe Accident Consequences Using Inherent Safety Principals,” Fast Reactor Safety 2009, Tokyo, Japan, December 2009. R. Wigeland, and J. Cahalan, “Mitigation of Severe Accident Consequences Using Inherent Safety Principals,” Fast Reactor Safety 2009, Tokyo, Japan, December 2009.
2.
Zurück zum Zitat Ph. Bergeonneau, et al., “Uncertainty Analysis on the Measurements and Calculation of Feedback Reactivity Effect in LMFBRs, Application of Super-Phenix-1 Startup Experiments,” 30th NEACRP Meeting, NEACRP-A-833, Helsinki, Finland, September 1987. Ph. Bergeonneau, et al., “Uncertainty Analysis on the Measurements and Calculation of Feedback Reactivity Effect in LMFBRs, Application of Super-Phenix-1 Startup Experiments,” 30th NEACRP Meeting, NEACRP-A-833, Helsinki, Finland, September 1987.
3.
Zurück zum Zitat R. W. Schaefer, “Critical Experiment Tests of Bowing and Expansion Reactivity Calculations for Liquid-Metal-Cooled Fast Reactors,” Nuclear Science and Engineering, 103, 196, 1989. R. W. Schaefer, “Critical Experiment Tests of Bowing and Expansion Reactivity Calculations for Liquid-Metal-Cooled Fast Reactors,” Nuclear Science and Engineering, 103, 196, 1989.
4.
Zurück zum Zitat E. E. Lewis, Nuclear Power Reactor Safety, chapter 7, Wiley, New York, NY, 1977. E. E. Lewis, Nuclear Power Reactor Safety, chapter 7, Wiley, New York, NY, 1977.
5.
Zurück zum Zitat W. C. Horak, J. G. Guppy, and R. J. Kennett, Validation of SSC Using the FFTF Natural-Circulation Tests, BNL-NUREG-31437, Brookhaven National Laboratory Report, Upton, NY, December 1982. W. C. Horak, J. G. Guppy, and R. J. Kennett, Validation of SSC Using the FFTF Natural-Circulation Tests, BNL-NUREG-31437, Brookhaven National Laboratory Report, Upton, NY, December 1982.
6.
Zurück zum Zitat L. K. Chang, et al., “Experimental and Analytical Study of Loss-of-Flow Transients in EBR-II Occurring at Decay Power Levels,” Conference on Alternative Energy Sources, Miami Beach, FL, December 1985. L. K. Chang, et al., “Experimental and Analytical Study of Loss-of-Flow Transients in EBR-II Occurring at Decay Power Levels,” Conference on Alternative Energy Sources, Miami Beach, FL, December 1985.
7.
Zurück zum Zitat K. M. Tabb, et al., MELT-III B – An Updated Version of the MELT Code, HEDL-TME 78-108, Hanford Engineering Development Laboratory, Richland, WA, 1978. K. M. Tabb, et al., MELT-III B – An Updated Version of the MELT Code, HEDL-TME 78-108, Hanford Engineering Development Laboratory, Richland, WA, 1978.
8.
Zurück zum Zitat J. E. Cahalan, and T. Y. Wei, “Modeling Developments for the SAS4A and SASSYS Computer Codes,” International Conference on Fast Reactor Safety, American Nuclear Society, Snowbird, UT, August 1990. J. E. Cahalan, and T. Y. Wei, “Modeling Developments for the SAS4A and SASSYS Computer Codes,” International Conference on Fast Reactor Safety, American Nuclear Society, Snowbird, UT, August 1990.
9.
Zurück zum Zitat M. G. Stevenson, et al., “Current Status and Experimental Basis of the SAS LMFBR Accident Analysis Code,” Proceedings of the Conference on Fast Reactor Safety, CONF-740401-P3, p. 1303, Beverly Hills, CA, 1974. M. G. Stevenson, et al., “Current Status and Experimental Basis of the SAS LMFBR Accident Analysis Code,” Proceedings of the Conference on Fast Reactor Safety, CONF-740401-P3, p. 1303, Beverly Hills, CA, 1974.
10.
Zurück zum Zitat A. M. Tentner, et al., “SAS4A Computer Model for the Analysis of Hypothetical Core Disruptive Accidents in Liquid Metal Reactors,” Eastern Computer Simulation Conference, Orlando, FL, April 1987. A. M. Tentner, et al., “SAS4A Computer Model for the Analysis of Hypothetical Core Disruptive Accidents in Liquid Metal Reactors,” Eastern Computer Simulation Conference, Orlando, FL, April 1987.
11.
Zurück zum Zitat F. E. Dunn, and T. C. Wei, “The Role of SASSYS-1 in LMR Safety Analysis,” Proceedings of the International Topical Meeting on Safety of Next Generation Power Reactors, Seattle, WA, May 1988. F. E. Dunn, and T. C. Wei, “The Role of SASSYS-1 in LMR Safety Analysis,” Proceedings of the International Topical Meeting on Safety of Next Generation Power Reactors, Seattle, WA, May 1988.
12.
Zurück zum Zitat L. E. Strawbridge, and G. H. Clare, “Exclusion of Core Disruptive Accidents from the Design Basis Accident Envelope in CRBRP,” Proceedings of the International Meeting on Fast Reactor Safety, Vol. 1, pp. 317–327, American Nuclear Society, Knoxville, TN, April 21–25, 1985. L. E. Strawbridge, and G. H. Clare, “Exclusion of Core Disruptive Accidents from the Design Basis Accident Envelope in CRBRP,” Proceedings of the International Meeting on Fast Reactor Safety, Vol. 1, pp. 317–327, American Nuclear Society, Knoxville, TN, April 21–25, 1985.
13.
Zurück zum Zitat J. E. Cahalan, R. A. Wigeland, G. Friedel, G. Kussmaul, J. Moreau, M. Perks, and P. Royal, “Performance of Metal and Oxide Fuels During Accidents in a Large Liquid Metal Cooled Reactors,” Proceedings of the International Fast Reactor Safety Meeting, Vol. IV, p. 73, Snowbird, UT, August 1990. J. E. Cahalan, R. A. Wigeland, G. Friedel, G. Kussmaul, J. Moreau, M. Perks, and P. Royal, “Performance of Metal and Oxide Fuels During Accidents in a Large Liquid Metal Cooled Reactors,” Proceedings of the International Fast Reactor Safety Meeting, Vol. IV, p. 73, Snowbird, UT, August 1990.
14.
Zurück zum Zitat A. E. Wright, et al., “CAFÉ Experiments on the Flow and Freezing of Metal Fuel and Cladding Melts (2), Results, Analysis, and Applications,” International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7–11, 2009. A. E. Wright, et al., “CAFÉ Experiments on the Flow and Freezing of Metal Fuel and Cladding Melts (2), Results, Analysis, and Applications,” International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7–11, 2009.
15.
Zurück zum Zitat D. E. Smith, F. J. Martin, and A. Padilla, Internal Fuel-Motion Phenomenology: FUMO-E Code Analysis of PINEX Experiments, HEDL-SA-2629-FP, June 1982; D. R. Porten, et al., “PINEX-2 Experiment, Concept Verification of an Inherent Shutdown Mechanism for HCDA’s,” Proceedings of the International Meeting on Fast Reactor Safety Technology, Seattle, WA, August 19–23, 1979. D. E. Smith, F. J. Martin, and A. Padilla, Internal Fuel-Motion Phenomenology: FUMO-E Code Analysis of PINEX Experiments, HEDL-SA-2629-FP, June 1982; D. R. Porten, et al., “PINEX-2 Experiment, Concept Verification of an Inherent Shutdown Mechanism for HCDA’s,” Proceedings of the International Meeting on Fast Reactor Safety Technology, Seattle, WA, August 19–23, 1979.
16.
Zurück zum Zitat P. C. Ferrell, D. R. Porten, and R. J. Martin, “Internal Fuel Motion as an Inherent Shutdown Mechanism for LMFBR Accidents: PINEX-3, PINEX-2, and HUT 5-2A Experiments,” HEDL-SA-2264, Fast Reactor Safety Meeting, Sun Valley, Idaho, August 2, 1981. P. C. Ferrell, D. R. Porten, and R. J. Martin, “Internal Fuel Motion as an Inherent Shutdown Mechanism for LMFBR Accidents: PINEX-3, PINEX-2, and HUT 5-2A Experiments,” HEDL-SA-2264, Fast Reactor Safety Meeting, Sun Valley, Idaho, August 2, 1981.
17.
Zurück zum Zitat E. T. Weber, et al., “Transient Survivability of LMFBR Oxide Fuel Pins,” HEDL-SA-3349, British Nuclear Energy Society Conference on Science and Technology of Fast Reactor Safety, Guernsey, Channel Islands, May 12–16, 1986. E. T. Weber, et al., “Transient Survivability of LMFBR Oxide Fuel Pins,” HEDL-SA-3349, British Nuclear Energy Society Conference on Science and Technology of Fast Reactor Safety, Guernsey, Channel Islands, May 12–16, 1986.
18.
Zurück zum Zitat A. L. Pitner, et al., “TS-1 and TS-2 Transient Overpower Tests on FFTF Fuel,” Transactions of the American Nuclear Society, 50, 351–352, 1985. A. L. Pitner, et al., “TS-1 and TS-2 Transient Overpower Tests on FFTF Fuel,” Transactions of the American Nuclear Society, 50, 351–352, 1985.
19.
Zurück zum Zitat A. E. Waltar, N. P. Wilburn, D. C. Kolesar, L. D. O’Dell, A. Padilla, L. N. Stewart (HEDL), and W. L. Partain (NUS), An Analysis of the Unprotected Transient Overpower Accident in the FTR, HEDL-TME-75-50, Hanford Engineering Development Laboratory, Richland, WA, June 1975. A. E. Waltar, N. P. Wilburn, D. C. Kolesar, L. D. O’Dell, A. Padilla, L. N. Stewart (HEDL), and W. L. Partain (NUS), An Analysis of the Unprotected Transient Overpower Accident in the FTR, HEDL-TME-75-50, Hanford Engineering Development Laboratory, Richland, WA, June 1975.
20.
Zurück zum Zitat R. N. Koopman, et al., “TREAT Transient Overpower Experiment R12,” Transactions of the American Nuclear Society, 28, 482, 1978. R. N. Koopman, et al., “TREAT Transient Overpower Experiment R12,” Transactions of the American Nuclear Society, 28, 482, 1978.
21.
Zurück zum Zitat T. M. Burke, “Summary of FY 1997 Work Related to JAPC-US DOE Contract ‘Study on Improvement of Core Safety – Study on GEM (III)’ ”, HNF-2195-VA, DOE Technical Exchange, Tokyo Japan, February 10, 1998. T. M. Burke, “Summary of FY 1997 Work Related to JAPC-US DOE Contract ‘Study on Improvement of Core Safety – Study on GEM (III)’ ”, HNF-2195-VA, DOE Technical Exchange, Tokyo Japan, February 10, 1998.
22.
Zurück zum Zitat H. P. Planchon, et al., “The Experimental Breeder Reactor II Inherent Shutdown and Heat Removal Tests – Results and Analysis,” Proceedings of the International Meeting on Fast Reactor Safety, Vol. 1, pp. 281–291, American Nuclear Society, Knoxville, TN, April 21–25, 1985. H. P. Planchon, et al., “The Experimental Breeder Reactor II Inherent Shutdown and Heat Removal Tests – Results and Analysis,” Proceedings of the International Meeting on Fast Reactor Safety, Vol. 1, pp. 281–291, American Nuclear Society, Knoxville, TN, April 21–25, 1985.
23.
Zurück zum Zitat T. H. Baur, Behavior of Metallic Fuel in TREAT Transient Overpower Tests, CONF-880506-14, TI88 010042, Argonne National Laboratory, Argonne, IL, May 17, 1988. T. H. Baur, Behavior of Metallic Fuel in TREAT Transient Overpower Tests, CONF-880506-14, TI88 010042, Argonne National Laboratory, Argonne, IL, May 17, 1988.
24.
Zurück zum Zitat A. M. Tentner Kalimullah, and K. J. Miles, “Analysis of Metal Fuel Transient Overpower Experiments with the SAS4A Accident Analysis Code,” Proceedings of the International Conference on Fast Reactor Safety, American Nuclear Society, Snowbird, UT, August 1990. A. M. Tentner Kalimullah, and K. J. Miles, “Analysis of Metal Fuel Transient Overpower Experiments with the SAS4A Accident Analysis Code,” Proceedings of the International Conference on Fast Reactor Safety, American Nuclear Society, Snowbird, UT, August 1990.
25.
Zurück zum Zitat D. J. Hill, “An Overview of the EBR-II PRA,” Proceedings of the 1990 International Meeting on Fast Reactor Safety Meeting, Vol. IV, p. 33, Snowbird, UT, August 12–16, 1990. D. J. Hill, “An Overview of the EBR-II PRA,” Proceedings of the 1990 International Meeting on Fast Reactor Safety Meeting, Vol. IV, p. 33, Snowbird, UT, August 12–16, 1990.
26.
Zurück zum Zitat U.S. Nuclear Regulatory Commission, Preapplication Safety Evaluation Report for the Power Reactor Innovative Small Module (PRISM) Liquid Metal Reactor, NUREG-1368, Washington, DC, February 1994. U.S. Nuclear Regulatory Commission, Preapplication Safety Evaluation Report for the Power Reactor Innovative Small Module (PRISM) Liquid Metal Reactor, NUREG-1368, Washington, DC, February 1994.
27.
Zurück zum Zitat U.S. Nuclear Regulatory Commission, Preapplication Safety Evaluation Report for the Sodium Advanced Fast Reactor (SAFR) Liquid Metal Reactor, NUREG-1369, Washington, DC, December 1991. U.S. Nuclear Regulatory Commission, Preapplication Safety Evaluation Report for the Sodium Advanced Fast Reactor (SAFR) Liquid Metal Reactor, NUREG-1369, Washington, DC, December 1991.
Metadaten
Titel
Unprotected Transients
verfasst von
John Sackett
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-9572-8_15