Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

4. Unsteady-State Brush Theory

verfasst von: Luigi Romano

Erschienen in: Advanced Brush Tyre Modelling

Verlag: Springer International Publishing

share
TEILEN

Abstract

Many transient phenomena concerning the tyre-road interaction are effectively explained within the theoretical framework of the brush theory. The analysis in vanishing sliding conditions is relatively simple and may be conducted with respect to any time-varying slip input. The case of limited friction available inside the contact patch is rather involving. In this context, the investigations proposed in this chapter are limited to small spin slips under the assumption of a thin tyre. The situation further complicates when considering a flexible tyre carcass, but it may be still approached using some intuition from Chap. 3. A rather general formulation of the transient problem is proposed, which allows to gain some preliminary insights about the relaxation behaviour of the tyre.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It should be observed that if the initial conditions are described by a function \(\boldsymbol{u}_{\boldsymbol{t}0}(\boldsymbol{x})\) using the original coordinates \(\boldsymbol{x}\), then in the coordinate system \(\boldsymbol{\xi }\) they should be represented by a new function \(\boldsymbol{u}_{\boldsymbol{t}0}^\prime (\boldsymbol{\xi }) \triangleq \boldsymbol{u}_{\boldsymbol{t}0}(\boldsymbol{x}(\boldsymbol{\xi }))\). Similar considerations also hold for other functions. However, the same notation is used in the remaining of the chapter for the sake of simplicity.
 
2
Therefore, the transient brush theory may be seen as a weak one, in the sense that the solutions are always \(C^0(\mathscr {P}\times \mathbb {R}_{\ge 0};\mathbb {R}^2)\), but higher regularity cannot be required.
 
3
The coordinates for which https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-98435-9_4/517912_1_En_4_IEq77_HTML.gif and https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-98435-9_4/517912_1_En_4_IEq78_HTML.gif correspond to the points where the slope of the lateral shear stress equals that of the friction bound, and for which the micro-sliding velocity vanishes, that is \(\bar{\boldsymbol{v}}_\text {s}(\boldsymbol{\xi },s) = \boldsymbol{0}\).
 
4
It should be noticed that in Eqs. (4.19) the adhesion solution \(u_y^\text {(a)}(\boldsymbol{\xi },s) \) has been extended analytically over the whole contact patch \(\mathscr {P}\). This makes it possible to restate \(\mathscr {P}^\text {(a)}\) and \(\mathscr {P}^\text {(s)}\) as in Eqs. (4.20).
 
Literatur
1.
Zurück zum Zitat Schlippe B von, Dietrich R (1941) Das flattern eined bepneuten rades. Bericht 140 der Lilienthal Gesellschaft. NACA TM 1365 Schlippe B von, Dietrich R (1941) Das flattern eined bepneuten rades. Bericht 140 der Lilienthal Gesellschaft. NACA TM 1365
2.
Zurück zum Zitat Force and moment response of pneumatic tires to lateral motion inputs. Trans ASME, J Eng Ind 88B (1966) Force and moment response of pneumatic tires to lateral motion inputs. Trans ASME, J Eng Ind 88B (1966)
4.
Zurück zum Zitat Takács D, Orosz G, Stèpán G (2009) Delay effects in shimmy dynamics of wheels with stretched string-like tyres. Eur J Mech A Solids 28(3):516–525 CrossRef Takács D, Orosz G, Stèpán G (2009) Delay effects in shimmy dynamics of wheels with stretched string-like tyres. Eur J Mech A Solids 28(3):516–525 CrossRef
5.
Zurück zum Zitat Takács D, Stèpán G (2012) Micro-shimmy of towed structures in experimentally uncharted unstable parameter domain. Veh Syst Dyn 50(11):1613–1630 CrossRef Takács D, Stèpán G (2012) Micro-shimmy of towed structures in experimentally uncharted unstable parameter domain. Veh Syst Dyn 50(11):1613–1630 CrossRef
9.
Zurück zum Zitat Besselink IJM (2000) Shimmy of aircraft main landing gears [doctoral thesis]. Delft Besselink IJM (2000) Shimmy of aircraft main landing gears [doctoral thesis]. Delft
10.
Zurück zum Zitat Ran S (2016) Tyre models for shimmy analysis: from linear to nonlinear [doctoral thesis]. Eindhoven Ran S (2016) Tyre models for shimmy analysis: from linear to nonlinear [doctoral thesis]. Eindhoven
11.
Zurück zum Zitat Pacejka HB (1966) The wheel shimmy phenomenon: a theoretical and experimental investigation with particular reference to the non-linear problem [doctoral thesis]. Delft Pacejka HB (1966) The wheel shimmy phenomenon: a theoretical and experimental investigation with particular reference to the non-linear problem [doctoral thesis]. Delft
13.
Zurück zum Zitat Mavros G, Rahnejat H, King PD (2004) Transient analysis of tyre friction generation using a brush model with interconnected viscoelastic bristles. In: Wolfson school of mechanical and manufacturing engineering, Loughborough University, Loughborough, UK. https://​doi.​org/​10.​1243/​146441905X9908 Mavros G, Rahnejat H, King PD (2004) Transient analysis of tyre friction generation using a brush model with interconnected viscoelastic bristles. In: Wolfson school of mechanical and manufacturing engineering, Loughborough University, Loughborough, UK. https://​doi.​org/​10.​1243/​146441905X9908
17.
Zurück zum Zitat Cattaneo C (2008) Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti dell’Accademia Naturale dei Lincei. Serie 6, 227, 342–348, 434–436, 474–478 Cattaneo C (2008) Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti dell’Accademia Naturale dei Lincei. Serie 6, 227, 342–348, 434–436, 474–478
18.
Zurück zum Zitat Guiggiani M (2018) The science of vehicle dynamics, 2nd edn. Springer International, Cham(Switzerland) CrossRef Guiggiani M (2018) The science of vehicle dynamics, 2nd edn. Springer International, Cham(Switzerland) CrossRef
19.
Zurück zum Zitat Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Handbuch der Physik, vol 3/1. Berlin, Springer, p 226 Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Handbuch der Physik, vol 3/1. Berlin, Springer, p 226
Metadaten
Titel
Unsteady-State Brush Theory
verfasst von
Luigi Romano
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-98435-9_4

Premium Partner