Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning

share
TEILEN

Abstract

Techniques used for spatio-temporal anomaly detection in an unsupervised settings has attracted great attention in recent years. It has extensive use in a wide variety of applications such as: medical diagnosis, sensor events analysis, earth science, fraud detection systems, etc. Most of the real world time series datasets have spatial dimension as additional context such as geographic location. Although many temporal data are spatio-temporal in nature, existing techniques are limited to handle both contextual (spatial and temporal) attributes during anomaly detection process. Taking into account of spatial context in addition to temporal context would help uncovering complex anomaly types and unexpected and interesting knowledge about problem domain. In this paper, a new approach to the problem of unsupervised anomaly detection in a multivariate spatio-temporal dataset is proposed using a hybrid deep learning framework. The proposed approach is composed of a Long Short Term Memory (LSTM) Encoder and Deep Neural Network (DNN) based classifier to extract spatial and temporal contexts. Although the approach has been employed on crime dataset from San Francisco Police Department to detect spatio-temporal anomalies, it can be applied to any spatio-temporal datasets.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), Article 15 (2009) Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), Article 15 (2009)
2.
3.
Zurück zum Zitat Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014) CrossRef Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014) CrossRef
4.
Zurück zum Zitat Cheng, T., Li, Z.: A hybrid approach to detect spatial-temporal outliers. In: International Conference on Geoinformatics (2004) Cheng, T., Li, Z.: A hybrid approach to detect spatial-temporal outliers. In: International Conference on Geoinformatics (2004)
5.
Zurück zum Zitat Cheng, T., Li, Z.: A multiscale approach for spatio-temporal outlier detection. Trans. GIS 10(2), 253–263 (2006) CrossRef Cheng, T., Li, Z.: A multiscale approach for spatio-temporal outlier detection. Trans. GIS 10(2), 253–263 (2006) CrossRef
6.
Zurück zum Zitat Shekhar, S., Lu, C.T., Zhang, P.: A unified approach to detecting spatial outliers. Geoinformatica 7(2), 139–166 (2003) CrossRef Shekhar, S., Lu, C.T., Zhang, P.: A unified approach to detecting spatial outliers. Geoinformatica 7(2), 139–166 (2003) CrossRef
7.
Zurück zum Zitat Lu, C.-T., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: ICDM Conference (2003) Lu, C.-T., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: ICDM Conference (2003)
8.
Zurück zum Zitat Shekhar, S., Lu, C.T., Zhang, P.: Detecting graph-based spatial outliers: algorithms and applications. In: ACM KDD Conference (2001) Shekhar, S., Lu, C.T., Zhang, P.: Detecting graph-based spatial outliers: algorithms and applications. In: ACM KDD Conference (2001)
9.
Zurück zum Zitat Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: SIAM Conference on Data Mining (2006) Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: SIAM Conference on Data Mining (2006)
10.
Zurück zum Zitat Adam, N.R., Janeja, V.P., Atluri, V.: Neighborhood-based detection of anomalies in high-dimensional spatio-temporal sensor datasets. In: ACM SAC Conference (2004) Adam, N.R., Janeja, V.P., Atluri, V.: Neighborhood-based detection of anomalies in high-dimensional spatio-temporal sensor datasets. In: ACM SAC Conference (2004)
11.
Zurück zum Zitat Birant, D., Kut, A.: Spatio-temporal outlier detection in large databases. In: 28th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik (2006) Birant, D., Kut, A.: Spatio-temporal outlier detection in large databases. In: 28th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik (2006)
12.
Zurück zum Zitat Yaminshi, K., Takeuchi, J.: A unifying framework for detecting outliers and change points from time series non-stationary data. In: ACM KDD Conference (2002) Yaminshi, K., Takeuchi, J.: A unifying framework for detecting outliers and change points from time series non-stationary data. In: ACM KDD Conference (2002)
13.
Zurück zum Zitat Cheng, H., et al.: Detection and characterization of anomalies in multivariate time series. In: SDM (2009) Cheng, H., et al.: Detection and characterization of anomalies in multivariate time series. In: SDM (2009)
14.
Zurück zum Zitat Gupta, M., Sharma, A.B., Chen, H., Jiang, G.: Context-aware time series anomaly detection for complex systems (2013) Gupta, M., Sharma, A.B., Chen, H., Jiang, G.: Context-aware time series anomaly detection for complex systems (2013)
15.
Zurück zum Zitat Smets, K., Verdonk, B., Jordaan, E.M.: Discovering novelty in spatio/temporal data using one-class support vector machines. In: International Joint Conference on Neural Networks (2009) Smets, K., Verdonk, B., Jordaan, E.M.: Discovering novelty in spatio/temporal data using one-class support vector machines. In: International Joint Conference on Neural Networks (2009)
18.
Zurück zum Zitat Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning (ICML) (2015) Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning (ICML) (2015)
19.
Zurück zum Zitat Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231 (1996) Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231 (1996)
20.
Zurück zum Zitat Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
Metadaten
Titel
Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning
verfasst von
Yildiz Karadayi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39098-3_13

Premium Partner