Skip to main content
Erschienen in:

18.06.2024 | Technical Paper

Unsupervised anomaly detection in the textile texture database

verfasst von: Wen-Lin Chu, Qun-Wei Chang, Bo-Lin Jian

Erschienen in: Microsystem Technologies | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Anomaly detection in textile images poses significant challenges due to the scarcity of defective samples and the complex nature of textile textures. This study presents a novel image processing workflow that enhances the unsupervised Variational Autoencoder’s (VAE) ability to identify anomalies in textile images, addressing the limitation of insufficient defective samples in real-world manufacturing scenarios. The primary motivation behind this research is to develop a robust anomaly detection method that can be trained using only normal samples, overcoming the common imbalance between normal and defective samples in the textile industry. Our proposed method introduces domain-specific techniques to preprocess images, assess the adequacy of training samples, and employ intuitive visual methods to differentiate between normal and abnormal samples. A key strength of our approach lies in strategically cropping original images into smaller blocks, increasing training samples and computational efficiency. However, this cropping step introduces abrupt boundary issues that can hinder accurate anomaly detection. To mitigate this problem, we developed a refined image processing approach that effectively resolves boundary artifacts, enabling precise localization of abnormal regions. We trained, tested, and validated our VAE model using the TILDA textile texture database. The experimental results highlight the robustness of our method, achieving high identification rates of 74% for normal samples and 76.9% for abnormal samples, even when trained solely on normal samples. The insights gained from this study have significant implications for the textile industry, paving the way for more efficient and reliable quality control processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Lafarge MW, Caicedo JC, Carpenter AE, Pluim JPW, Singh S, Veta M (2019) Capturing single-cell phenotypic variation via unsupervised representation learning. Proc Mach Learn Res 103:315–325 Lafarge MW, Caicedo JC, Carpenter AE, Pluim JPW, Singh S, Veta M (2019) Capturing single-cell phenotypic variation via unsupervised representation learning. Proc Mach Learn Res 103:315–325
Zurück zum Zitat Nsengiyumva P (2014) A vision-based Quality Inspection System for Fabric Defect Detection and classification. Central University of Technology, Free State], Bloemfontein Nsengiyumva P (2014) A vision-based Quality Inspection System for Fabric Defect Detection and classification. Central University of Technology, Free State], Bloemfontein
Metadaten
Titel
Unsupervised anomaly detection in the textile texture database
verfasst von
Wen-Lin Chu
Qun-Wei Chang
Bo-Lin Jian
Publikationsdatum
18.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-024-05711-1