Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2016 | OriginalPaper | Buchkapitel

Unsupervised Detection of Unusual Behaviors from Smart Home Energy Data

verfasst von : Welma Pereira, Alois Ferscha, Klemens Weigl

Erschienen in: Artificial Intelligence and Soft Computing

Verlag: Springer International Publishing

share
TEILEN

Abstract

In this paper the potentials of identifying unusual user behaviors and changes of behavior from smart home energy meters are investigated. We compare the performance of the classical change detection Page-Hinkley test (PHT) with a new application of a self-adaptive stream clustering algorithm to detect novelties related to the time of use of appliances at home. With the use of annotated data, the true positive rate of the clustering-based method outperformed the PHT by at least 20 %. Moreover the method was able to identify behavior changes related to time shifts and replacement of appliances. The motivation for this study is based on the need for identifying and guiding behavior changes that can reduce energy consumption, and use this knowledge in the development of systems that can raise just-in-time warnings to save energy (e.g. avoid stand-by modes), and guide sustainable behavior changes.
Literatur
1.
Zurück zum Zitat Hekler, E.B., Klasnja, P., Froehlich, J.E., Buman, M.P.: Mind the theoretical gap: interpreting, using, and developing behavioral theory in HCI research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3307–3316. ACM, New York (2013) Hekler, E.B., Klasnja, P., Froehlich, J.E., Buman, M.P.: Mind the theoretical gap: interpreting, using, and developing behavioral theory in HCI research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3307–3316. ACM, New York (2013)
2.
Zurück zum Zitat Danner, U.N., Aarts, H., Vries, N.K.: Habit vs. intention in the prediction of future behaviour: the role of frequency, context stability and mental accessibility of past behaviour. Br. J. Soc. Psychol. 47, 245–265 (2008) CrossRef Danner, U.N., Aarts, H., Vries, N.K.: Habit vs. intention in the prediction of future behaviour: the role of frequency, context stability and mental accessibility of past behaviour. Br. J. Soc. Psychol. 47, 245–265 (2008) CrossRef
4.
Zurück zum Zitat Klasnja, P., Consolvo, S., Pratt, W.: How to evaluate technologies for health behavior change in HCI research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3063–3072. ACM, New York (2011) Klasnja, P., Consolvo, S., Pratt, W.: How to evaluate technologies for health behavior change in HCI research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3063–3072. ACM, New York (2011)
5.
Zurück zum Zitat Hoelzl, G., Halbmayer, P., Rogner, H., Xue, C., Ferscha, A.: On the utilization of smart gadgets for energy aware sensitive behavior. In: The 8th International Conference on Digital Society, pp. 192–198. ACM (2014) Hoelzl, G., Halbmayer, P., Rogner, H., Xue, C., Ferscha, A.: On the utilization of smart gadgets for energy aware sensitive behavior. In: The 8th International Conference on Digital Society, pp. 192–198. ACM (2014)
6.
Zurück zum Zitat Halbmayer, P., Hoelzl, G., Ferscha, A.: A dynamic service module oriented framework for real-world situation representation. In: The 6th International Conference on Adaptive and Self-Adaptive Systems and Applications, pp. 79–84 (2014) Halbmayer, P., Hoelzl, G., Ferscha, A.: A dynamic service module oriented framework for real-world situation representation. In: The 6th International Conference on Adaptive and Self-Adaptive Systems and Applications, pp. 79–84 (2014)
7.
Zurück zum Zitat Kranen, P., Assenty, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clustering. In: Ninth IEEE International Conference on Data Mining, pp. 249–258 (2009) Kranen, P., Assenty, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clustering. In: Ninth IEEE International Conference on Data Mining, pp. 249–258 (2009)
10.
Zurück zum Zitat Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process 99, 215–249 (2014) CrossRef Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process 99, 215–249 (2014) CrossRef
11.
Zurück zum Zitat Tanuja, G., Rahayu, D.A.P., Seetharam, D.P., Kunnath, R., Kumar, A.P., Vijay, A., Husain, S.A., Kalyanaraman, S.: SocketWatch: an autonomous appliance monitoring system. In: IEEE International Conference on Pervasive Computing and Communications, pp. 38–43. IEEE (2014) Tanuja, G., Rahayu, D.A.P., Seetharam, D.P., Kunnath, R., Kumar, A.P., Vijay, A., Husain, S.A., Kalyanaraman, S.: SocketWatch: an autonomous appliance monitoring system. In: IEEE International Conference on Pervasive Computing and Communications, pp. 38–43. IEEE (2014)
12.
Zurück zum Zitat Vallim, R.M.M., Andrade Filho, J.A., De Mello, R.F., De Carvalho, A.C.P.L.F.: Online behavior change detection in computer games. Expert Syst. Appl. 40, 6258–6265 (2013) CrossRef Vallim, R.M.M., Andrade Filho, J.A., De Mello, R.F., De Carvalho, A.C.P.L.F.: Online behavior change detection in computer games. Expert Syst. Appl. 40, 6258–6265 (2013) CrossRef
13.
Zurück zum Zitat Aggarwal, C.: A Survey of Change Diagnosis Algorithms in Evolving Data Streams, vol. 31, pp. 85–102. Springer, Heidelberg (2007) Aggarwal, C.: A Survey of Change Diagnosis Algorithms in Evolving Data Streams, vol. 31, pp. 85–102. Springer, Heidelberg (2007)
14.
Zurück zum Zitat Zaidi, A.A., Kupzog, F., Zia, T., Palensky, P.: Load recognition for automated demand response in microgrids. In: 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2442–2447 (2010) Zaidi, A.A., Kupzog, F., Zia, T., Palensky, P.: Load recognition for automated demand response in microgrids. In: 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2442–2447 (2010)
15.
Zurück zum Zitat Wang, M., Wang, X.S.: Efficient evaluation of composite correlations for streaming time series. In: Dong, G., Tang, C., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 369–380. Springer, Heidelberg (2003) CrossRef Wang, M., Wang, X.S.: Efficient evaluation of composite correlations for streaming time series. In: Dong, G., Tang, C., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 369–380. Springer, Heidelberg (2003) CrossRef
16.
Zurück zum Zitat Chen, Y.C., Peng, W.C., Huang, J.L., Lee, W.C.: Significant correlation pattern mining in smart homes. ACM Trans. Intell. Syst. Technol. 6, 35:1–35:23 (2015) Chen, Y.C., Peng, W.C., Huang, J.L., Lee, W.C.: Significant correlation pattern mining in smart homes. ACM Trans. Intell. Syst. Technol. 6, 35:1–35:23 (2015)
17.
Zurück zum Zitat Rollins, S., Banerjee, N.: Using rule mining to understand appliance energy consumption patterns. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 29–37 (2014) Rollins, S., Banerjee, N.: Using rule mining to understand appliance energy consumption patterns. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 29–37 (2014)
18.
Zurück zum Zitat Chamber, Y., Garg, A., Mithal, V., Brugere, I., Lau, M., Boriah, S., Potter, C.: A novel time series based approach to detect gradual vegetation changes in forests. In: Proceedings of the 2011 NASA Conference on Intelligent Data Understanding (CIDU) (2011) Chamber, Y., Garg, A., Mithal, V., Brugere, I., Lau, M., Boriah, S., Potter, C.: A novel time series based approach to detect gradual vegetation changes in forests. In: Proceedings of the 2011 NASA Conference on Intelligent Data Understanding (CIDU) (2011)
19.
Zurück zum Zitat Le, V.-D., Scholten, H., Havinga, P.J.M.: Online change detection for energy-efficient mobile crowdsensing. In: Awan, I., Younas, M., Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS, vol. 8640, pp. 1–16. Springer, Heidelberg (2014) Le, V.-D., Scholten, H., Havinga, P.J.M.: Online change detection for energy-efficient mobile crowdsensing. In: Awan, I., Younas, M., Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS, vol. 8640, pp. 1–16. Springer, Heidelberg (2014)
20.
Zurück zum Zitat Aztiria, A., Farhadi, G., Aghajan, H.: User behavior shift detection in intelligent environments. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 90–97. Springer, Heidelberg (2012) CrossRef Aztiria, A., Farhadi, G., Aghajan, H.: User behavior shift detection in intelligent environments. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 90–97. Springer, Heidelberg (2012) CrossRef
21.
Zurück zum Zitat Bourgeois, J., van der Linden, J., Kortuem, G., Price, B.A., Rimmer, C.: Conversations with my washing machine: an in-the-wild study of demand shifting with self-generated energy. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 459–470 (2014) Bourgeois, J., van der Linden, J., Kortuem, G., Price, B.A., Rimmer, C.: Conversations with my washing machine: an in-the-wild study of demand shifting with self-generated energy. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 459–470 (2014)
22.
Zurück zum Zitat Kawamoto, K., Tanaka, T., Kuriyama, H.: Your activity tracker knows when you quit smoking. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 107–110 (2014) Kawamoto, K., Tanaka, T., Kuriyama, H.: Your activity tracker knows when you quit smoking. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 107–110 (2014)
23.
Zurück zum Zitat Doryab, A., Min, J.K., Wiese, J., Zimmerman, J., Hong, J.: Detection of behavior change in people with depression. In: AAAI Workshops (2014) Doryab, A., Min, J.K., Wiese, J., Zimmerman, J., Hong, J.: Detection of behavior change in people with depression. In: AAAI Workshops (2014)
24.
Zurück zum Zitat Darby, S.: The effectiveness of feedback on energy consumption. A review for DEFRA of the literature on metering, billing and direct displays. Technical report, Environmental Change Inst., Univ. Oxford, Oxford, U.K. (2006) Darby, S.: The effectiveness of feedback on energy consumption. A review for DEFRA of the literature on metering, billing and direct displays. Technical report, Environmental Change Inst., Univ. Oxford, Oxford, U.K. (2006)
25.
Zurück zum Zitat Tsang, F., Burge, P., Diepeveen, S., Guerin, B., Drabble, S., Bloom, E.: What works in changing energy-using behaviours in the home? A rapid evidence assessment: final report. UK Department of Energy and Climate Change. London, United Kingdom (2012) Tsang, F., Burge, P., Diepeveen, S., Guerin, B., Drabble, S., Bloom, E.: What works in changing energy-using behaviours in the home? A rapid evidence assessment: final report. UK Department of Energy and Climate Change. London, United Kingdom (2012)
26.
Zurück zum Zitat Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Ener. Rev. 56, 810–819 (2016) CrossRef Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Ener. Rev. 56, 810–819 (2016) CrossRef
27.
Zurück zum Zitat Kjeldskov, J., Skov, M.B., Paay, J., Pathmanathan, R.: Using mobile phones to support sustainability: a field study of residential electricity consumption. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2347–2356. ACM (2012) Kjeldskov, J., Skov, M.B., Paay, J., Pathmanathan, R.: Using mobile phones to support sustainability: a field study of residential electricity consumption. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2347–2356. ACM (2012)
28.
Zurück zum Zitat Chen, Y.C., Ko, Y.L., Peng, W.C.: An intelligent system for mining usage patterns from appliance data in smart home environment. In: Technologies and Applications of Artificial Intelligence (TAAI), pp. 319–322 (2012) Chen, Y.C., Ko, Y.L., Peng, W.C.: An intelligent system for mining usage patterns from appliance data in smart home environment. In: Technologies and Applications of Artificial Intelligence (TAAI), pp. 319–322 (2012)
29.
Zurück zum Zitat Kjeldskov, J., Skov, M.B., Paay, J., Lund, D., Madsen, T., Nielsen, M.: Eco-forecasting for domestic electricity use. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1985–1988. ACM (2015) Kjeldskov, J., Skov, M.B., Paay, J., Lund, D., Madsen, T., Nielsen, M.: Eco-forecasting for domestic electricity use. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1985–1988. ACM (2015)
30.
Zurück zum Zitat Hollis, V., Konrad, A., Whittaker, S.: Change of heart: emotion tracking to promote behavior change. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2643–2652. ACM (2015) Hollis, V., Konrad, A., Whittaker, S.: Change of heart: emotion tracking to promote behavior change. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2643–2652. ACM (2015)
31.
Zurück zum Zitat Drachen, A., Thurau, C., Sifa, R., Bauckhage, C.: A comparison of methods for player clustering via behavioral telemetry. CoRR. abs/1407.3950 (2014) Drachen, A., Thurau, C., Sifa, R., Bauckhage, C.: A comparison of methods for player clustering via behavioral telemetry. CoRR. abs/1407.3950 (2014)
Metadaten
Titel
Unsupervised Detection of Unusual Behaviors from Smart Home Energy Data
verfasst von
Welma Pereira
Alois Ferscha
Klemens Weigl
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-39384-1_46

Premium Partner