Skip to main content
Erschienen in: Neural Computing and Applications 10/2017

02.12.2016 | New Trends in data pre-processing methods for signal and image classification

Unsupervised feature selection based on decision graph

verfasst von: Jinrong He, Yingzhou Bi, Lixin Ding, Zhaokui Li, Shenwen Wang

Erschienen in: Neural Computing and Applications | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In applications of algorithms, feature selection has got much attention of researchers, due to its ability to overcome the curse of dimensionality, reduce computational costs, increase the performance of the subsequent classification algorithm and output the results with better interpretability. To remove the redundant and noisy features from original feature set, we define local density and discriminant distance for each feature vector, wherein local density is used for measuring the representative ability of each feature vector, and discriminant distance is used for measuring the redundancy and similarity between features. Based on the above two quantities, the decision graph score is proposed as the evaluation criterion of unsupervised feature selection. The method is intuitive and simple, and its performances are evaluated in the data classification experiments. From statistical tests on the averaged classification accuracies over 16 real-life dataset, it is observed that the proposed method obtains better or comparable ability of discriminant feature selection in 98% of the cases, compared with the state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen B, Hong J, Wang Y (1997) The problem of finding optimal subset of features[J]. Chin J Comput 20(2):133–138 Chen B, Hong J, Wang Y (1997) The problem of finding optimal subset of features[J]. Chin J Comput 20(2):133–138
2.
Zurück zum Zitat Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm[C]. In: Proceedings of the ninth national conference on artificial intelligence, Menlo Park, CA, USA, pp 129–134 Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm[C]. In: Proceedings of the ninth national conference on artificial intelligence, Menlo Park, CA, USA, pp 129–134
3.
Zurück zum Zitat Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF[J]. Mach Learn 53(1–2):23–69CrossRefMATH Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF[J]. Mach Learn 53(1–2):23–69CrossRefMATH
4.
Zurück zum Zitat Almuallim H, Dietterich TG (1994) Learning boolean concepts in the presence of many irrelevant features[J]. Artif Intell 69(1):279–305MathSciNetCrossRefMATH Almuallim H, Dietterich TG (1994) Learning boolean concepts in the presence of many irrelevant features[J]. Artif Intell 69(1):279–305MathSciNetCrossRefMATH
5.
Zurück zum Zitat Hall MA (1999) Correlation-based feature selection for machine learning[D]. The University of Waikato, Hillcrest Hall MA (1999) Correlation-based feature selection for machine learning[D]. The University of Waikato, Hillcrest
6.
Zurück zum Zitat Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution[C]. ICML 3:856–863 Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution[C]. ICML 3:856–863
7.
Zurück zum Zitat Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection[C]. In: Proceedings of conference on artificial intelligence (AAAI), pp 671–676 Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection[C]. In: Proceedings of conference on artificial intelligence (AAAI), pp 671–676
8.
Zurück zum Zitat Wei HL, Billings SA (2007) Feature subset selection and ranking for data dimensionality reduction[J]. IEEE Trans Pattern Anal Mach Learn 29(1):162–166CrossRef Wei HL, Billings SA (2007) Feature subset selection and ranking for data dimensionality reduction[J]. IEEE Trans Pattern Anal Mach Learn 29(1):162–166CrossRef
9.
Zurück zum Zitat Li WH, Chen WM, Yang LP, Gong WG (2007) Face feature selection and recognition based on different types of margin[J]. J Electron Tech 29(7):1744–1748 Li WH, Chen WM, Yang LP, Gong WG (2007) Face feature selection and recognition based on different types of margin[J]. J Electron Tech 29(7):1744–1748
11.
Zurück zum Zitat Dash M, Choi K, Scheuermann P et al (2002) Feature selection for clustering-A filter solution [C]. In: Proceedings of the 2nd IEEE international conference data mining, Piscataway, pp 115–122 Dash M, Choi K, Scheuermann P et al (2002) Feature selection for clustering-A filter solution [C]. In: Proceedings of the 2nd IEEE international conference data mining, Piscataway, pp 115–122
12.
Zurück zum Zitat Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity[J]. IEEE Trans Pattern Anal Mach Intell 24(3):301–312CrossRef Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity[J]. IEEE Trans Pattern Anal Mach Intell 24(3):301–312CrossRef
13.
Zurück zum Zitat Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. Pattern Anal Mach Intell IEEE Trans 27(8):1226–1238CrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. Pattern Anal Mach Intell IEEE Trans 27(8):1226–1238CrossRef
15.
Zurück zum Zitat Junling X, Yuming Z, Lin C, Baowen X (2012) An unsupervised feature selection approach based on mutual information[J]. J Comput Res Dev 49(2):372–382 Junling X, Yuming Z, Lin C, Baowen X (2012) An unsupervised feature selection approach based on mutual information[J]. J Comput Res Dev 49(2):372–382
16.
Zurück zum Zitat Bandhyapadhyay S, Bhadra T, Mitra P, Maullik U (2014) Integration of dense subgraph finding with feature clustering for unsupervised feature selection[J]. Pattern Recogn Lett 40:104–112CrossRef Bandhyapadhyay S, Bhadra T, Mitra P, Maullik U (2014) Integration of dense subgraph finding with feature clustering for unsupervised feature selection[J]. Pattern Recogn Lett 40:104–112CrossRef
17.
Zurück zum Zitat He X, Cai D, Niyogi P (2005) Laplacian score for feature selection[C]. In: Advances in neural information processing systems, pp 507–514 He X, Cai D, Niyogi P (2005) Laplacian score for feature selection[C]. In: Advances in neural information processing systems, pp 507–514
18.
Zurück zum Zitat Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning[C]. In: Proceedings of the international conference on machine learning (ICML), Corvallis, Oregon, pp 1151–1157 Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning[C]. In: Proceedings of the international conference on machine learning (ICML), Corvallis, Oregon, pp 1151–1157
19.
Zurück zum Zitat Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data[C]. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 333–342 Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data[C]. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 333–342
20.
Zurück zum Zitat Yang Y, Shen H T, Ma Z, et al (2011) l2, 1-norm regularized discriminative feature selection for unsupervised learning[C]. In: IJCAI proceedings-international joint conference on artificial intelligence, vol 22, no 1, p 1589 Yang Y, Shen H T, Ma Z, et al (2011) l2, 1-norm regularized discriminative feature selection for unsupervised learning[C]. In: IJCAI proceedings-international joint conference on artificial intelligence, vol 22, no 1, p 1589
21.
Zurück zum Zitat Li Z, Yang Y, Liu J et al (2012) Unsupervised feature selection using nonnegative spectral analysis[C]. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, Canada, pp 1026–1032 Li Z, Yang Y, Liu J et al (2012) Unsupervised feature selection using nonnegative spectral analysis[C]. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, Canada, pp 1026–1032
22.
Zurück zum Zitat Du L, Shen Z, Li X et al (2013) Local and global discriminative learning for unsupervised feature selection[C]. Data mining (ICDM), 2013 IEEE 13th international conference on IEEE, pp 131–140 Du L, Shen Z, Li X et al (2013) Local and global discriminative learning for unsupervised feature selection[C]. Data mining (ICDM), 2013 IEEE 13th international conference on IEEE, pp 131–140
23.
Zurück zum Zitat Zhao Z, Wang L, Liu H et al (2013) On similarity preserving feature selection[J]. Knowl Data Eng IEEE Trans 25(3):619–632CrossRef Zhao Z, Wang L, Liu H et al (2013) On similarity preserving feature selection[J]. Knowl Data Eng IEEE Trans 25(3):619–632CrossRef
24.
Zurück zum Zitat Liu Tao W, Gongyi CZ (2005) An effective unsupervised feature selection method for text clustering[J]. J Comput Res Dev 42(3):381–386CrossRef Liu Tao W, Gongyi CZ (2005) An effective unsupervised feature selection method for text clustering[J]. J Comput Res Dev 42(3):381–386CrossRef
25.
Zurück zum Zitat Lu Y, Cohen I, Zhou X S et al (2007) Feature selection using principal feature analysis[C]. In: Proceedings of the 15th international conference on Multimedia. ACM, pp 301–304 Lu Y, Cohen I, Zhou X S et al (2007) Feature selection using principal feature analysis[C]. In: Proceedings of the 15th international conference on Multimedia. ACM, pp 301–304
26.
Zurück zum Zitat Song Q, Ni J, Wang G (2013) A fast clustering-based feature subset selection algorithm for high-dimensional data[J]. Knowl Data Eng IEEE Trans 25(1):1–14CrossRef Song Q, Ni J, Wang G (2013) A fast clustering-based feature subset selection algorithm for high-dimensional data[J]. Knowl Data Eng IEEE Trans 25(1):1–14CrossRef
27.
Zurück zum Zitat Yan H, Yang J (2015) Sparse discriminative feature selection[J]. Pattern Recogn 48(5):1827–1835CrossRef Yan H, Yang J (2015) Sparse discriminative feature selection[J]. Pattern Recogn 48(5):1827–1835CrossRef
28.
Zurück zum Zitat Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks[J]. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks[J]. Science 344(6191):1492–1496CrossRef
29.
Zurück zum Zitat Brahim AB, Limam M (2016) A hybrid feature selection method based on instance learning and cooperative subset search[J]. Pattern Recogn Lett 69:28–34CrossRef Brahim AB, Limam M (2016) A hybrid feature selection method based on instance learning and cooperative subset search[J]. Pattern Recogn Lett 69:28–34CrossRef
30.
Zurück zum Zitat Şen B, Peker M, Çavuşoğlu A et al (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms[J]. J Med Syst 38(3):1–21 Şen B, Peker M, Çavuşoğlu A et al (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms[J]. J Med Syst 38(3):1–21
Metadaten
Titel
Unsupervised feature selection based on decision graph
verfasst von
Jinrong He
Yingzhou Bi
Lixin Ding
Zhaokui Li
Shenwen Wang
Publikationsdatum
02.12.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2737-2

Weitere Artikel der Ausgabe 10/2017

Neural Computing and Applications 10/2017 Zur Ausgabe

New Trends in data pre-processing methods for signal and image classification

Muscular synergy classification and myoelectric control using high-order cross-cumulants

New Trends in data pre-processing methods for signal and image classification

Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism

New Trends in data pre-processing methods for signal and image classification

Automatic sleep stages classification based on iterative filtering of electroencephalogram signals