Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.02.2020 | Original Article | Ausgabe 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Unsupervised image-to-image translation using intra-domain reconstruction loss

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 9/2020
Autoren:
Yuan Fan, Mingwen Shao, Wangmeng Zuo, Qingyun Li
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Generative adversarial networks (GANs) have been successfully used for considerable computer vision tasks, especially the image-to-image translation. However, GANs are often accompanied by training instability and mode collapse in the process of image-to-image translation, which leads to the generation of low-quality images. To address the aforementioned problem, by combining CycleGAN and intra-domain reconstruction loss (IDRL), we propose an unsupervised image-to-image translation network named “Cycle-IDRL”. Specifically, the generator adopts the U-Net network with skip connections, which merges the coarse-grained and fine-grained features and the least squares loss in LSGAN is used to improve the stability of training process. Especially, the target domain features extracted from the discriminator are used as input of generator to generate reconstructed samples. Then, we construct the IDRL between the target domain samples and the reconstructed samples by using L1 norm. The experimental results on multiple datasets show that the proposed method performs better than the existing methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Zur Ausgabe