Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 11/2019

02.07.2019 | Research Article - Computer Engineering and Computer Science

Unsupervised Shape Co-segmentation Based on Transformation Network

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unsupervised co-segmentation is one type of shape segmentation. It segments a set of 3D shapes into meaningful parts and creates a correspondence between parts simultaneously without any labeled data. Clustering-based co-segmentation is based on the correlation analysis in a descriptor space and has received increasing attention. In this paper, we propose a co-segmentation method, in which a transformation network for data representation is trained by extreme learning machine, embedding shape primitives into more discriminant feature spaces, so as to achieve better segmentation performance. Thus, co-segmentation can be implemented by clustering on lower dimensions based on the transformation network, so the execution is more efficient. Moreover, once the transformation network is trained, it can be applied to the data representation acquisition process without re-computing similarity parameters. In order to create and train the transformation network, the correlation of shape primitives is utilized. Therefore, an affinity matrix construction method based on parameter-free and high-efficiency simplex sparse representation is introduced. This construction of correlation avoids the blindness of parameter setting. Experimental results show that the proposed co-segmentation method is effective and efficient. In addition, it also can deal with incremental co-segmentation when the dataset is expanded.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.; Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)CrossRef Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.; Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)CrossRef
2.
Zurück zum Zitat Alshamiri, A.K.; Surampudi, B.R.; Singh, A.: A Novel ELM K-Means Algorithm for Clustering, pp. 212–222. Springer, Cham (2015) Alshamiri, A.K.; Surampudi, B.R.; Singh, A.: A Novel ELM K-Means Algorithm for Clustering, pp. 212–222. Springer, Cham (2015)
3.
Zurück zum Zitat Belkin, M.; Niyogi, P.; Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetMATH Belkin, M.; Niyogi, P.; Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetMATH
5.
Zurück zum Zitat Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017) Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)
6.
Zurück zum Zitat Chen, X.; Golovinskiy, A.; Funkhouser, T.: A benchmark for 3D mesh segmentation. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28, No. 3 (2009) Chen, X.; Golovinskiy, A.; Funkhouser, T.: A benchmark for 3D mesh segmentation. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28, No. 3 (2009)
8.
Zurück zum Zitat Gal, R.; Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRef Gal, R.; Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRef
9.
Zurück zum Zitat Golovinskiy, A.; Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)CrossRef Golovinskiy, A.; Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)CrossRef
10.
Zurück zum Zitat Hilaga, M.; Shinagawa, Y.; Kohmura, T.; Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, SIGGRAPH ’01, pp. 203–212. ACM (2001) Hilaga, M.; Shinagawa, Y.; Kohmura, T.; Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, SIGGRAPH ’01, pp. 203–212. ACM (2001)
11.
Zurück zum Zitat Hu, R.; Fan, L.; Liu, L.: Co-segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31(5), 1703–1713 (2012)CrossRef Hu, R.; Fan, L.; Liu, L.: Co-segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31(5), 1703–1713 (2012)CrossRef
12.
Zurück zum Zitat Huang, G.; Song, S.; Gupta, J.N.D.; Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)CrossRef Huang, G.; Song, S.; Gupta, J.N.D.; Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)CrossRef
13.
Zurück zum Zitat Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRef Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRef
14.
Zurück zum Zitat Huang, H.; Kalegorakis, E.; Chaudhuri, S.; Ceylan, D.; Kim, V.; Yumer, E.: Learning local shape descriptors with view-based convolutional neural networks. ACM Trans. Graph. (conditionally accepted) (2017) Huang, H.; Kalegorakis, E.; Chaudhuri, S.; Ceylan, D.; Kim, V.; Yumer, E.: Learning local shape descriptors with view-based convolutional neural networks. ACM Trans. Graph. (conditionally accepted) (2017)
15.
Zurück zum Zitat Huang, J.; Nie, F.; Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3569–3575. AAAI Press (2015) Huang, J.; Nie, F.; Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3569–3575. AAAI Press (2015)
16.
Zurück zum Zitat Huang, Q.; Koltun, V.; Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30(6), 125:1–125:12 (2011) Huang, Q.; Koltun, V.; Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30(6), 125:1–125:12 (2011)
17.
Zurück zum Zitat Huang, Z.; Yu, Y.; Gu, J.; Liu, H.: An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans. Cybern. 99, 1–14 (2016) Huang, Z.; Yu, Y.; Gu, J.; Liu, H.: An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans. Cybern. 99, 1–14 (2016)
18.
Zurück zum Zitat Saul, L.K.; Roweis, S.T.: An introduction to locally linear embedding Saul, L.K.; Roweis, S.T.: An introduction to locally linear embedding
19.
Zurück zum Zitat Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR) (2017) Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR) (2017)
20.
Zurück zum Zitat Kalogerakis, E.; Hertzmann, A.; Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)CrossRef Kalogerakis, E.; Hertzmann, A.; Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)CrossRef
21.
Zurück zum Zitat Le, T.; Bui, G.; Duan, Y.: A multi-view recurrent neural network for 3D mesh segmentation. Comput. Graph. 66, 103–112 (2017). Shape Modeling International 2017CrossRef Le, T.; Bui, G.; Duan, Y.: A multi-view recurrent neural network for 3D mesh segmentation. Comput. Graph. 66, 103–112 (2017). Shape Modeling International 2017CrossRef
22.
Zurück zum Zitat Li, H.; Sun, Z.; Li, Q.; Shi, J.: 3D shape co-segmentation by combining sparse representation with extreme learning machine. In: Pacific Rim Conference on Multimedia, pp. 570–581. Springer (2018) Li, H.; Sun, Z.; Li, Q.; Shi, J.: 3D shape co-segmentation by combining sparse representation with extreme learning machine. In: Pacific Rim Conference on Multimedia, pp. 570–581. Springer (2018)
23.
Zurück zum Zitat Luo, P.; Wu, Z.; Xia, C.; Feng, L.; Ma, T.: Co-segmentation of 3D shapes via multi-view spectral clustering. Vis. Comput. 29(6), 587–597 (2013)CrossRef Luo, P.; Wu, Z.; Xia, C.; Feng, L.; Ma, T.: Co-segmentation of 3D shapes via multi-view spectral clustering. Vis. Comput. 29(6), 587–597 (2013)CrossRef
24.
Zurück zum Zitat Meng, M.; Xia, J.; Luo, J.; He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. Comput. Aided Des. 45(2), 312–320 (2013)MathSciNetCrossRef Meng, M.; Xia, J.; Luo, J.; He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. Comput. Aided Des. 45(2), 312–320 (2013)MathSciNetCrossRef
25.
Zurück zum Zitat Papadimitriou, C.H.; Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall Inc, Upper Saddle River (1982)MATH Papadimitriou, C.H.; Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall Inc, Upper Saddle River (1982)MATH
26.
Zurück zum Zitat Peng, C.; Kang, Z.; Yang, M.; Cheng, Q.: Feature selection embedded subspace clustering. IEEE Signal Process. Lett. 23(7), 1018–1022 (2016)CrossRef Peng, C.; Kang, Z.; Yang, M.; Cheng, Q.: Feature selection embedded subspace clustering. IEEE Signal Process. Lett. 23(7), 1018–1022 (2016)CrossRef
27.
Zurück zum Zitat Ren, X.; Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV ’03, vol. 2, pp. 10–17. IEEE Computer Society, Washington, DC, USA (2003) Ren, X.; Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV ’03, vol. 2, pp. 10–17. IEEE Computer Society, Washington, DC, USA (2003)
28.
Zurück zum Zitat Reuter, M.; Wolter, F.-E.; Peinecke, N.: Laplace–Beltrami spectra as ’Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)CrossRef Reuter, M.; Wolter, F.-E.; Peinecke, N.: Laplace–Beltrami spectra as ’Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)CrossRef
29.
Zurück zum Zitat Shamir, A.: A survey on Mesh Segmentation Techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)CrossRefMATH Shamir, A.: A survey on Mesh Segmentation Techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)CrossRefMATH
30.
Zurück zum Zitat Shapira, L.; Shalom, S.; Shamir, A.; Cohen-Or, D.; Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)CrossRef Shapira, L.; Shalom, S.; Shamir, A.; Cohen-Or, D.; Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)CrossRef
31.
Zurück zum Zitat Shapira, L.; Shamir, A.; Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)CrossRef Shapira, L.; Shamir, A.; Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)CrossRef
32.
Zurück zum Zitat Shi, J.; Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRef Shi, J.; Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRef
33.
Zurück zum Zitat Shu, Z.; Qi, C.; Xin, S.; Hu, C.; Wang, L.; Zhang, Y.; Liu, L.: Unsupervised 3D shape segmentation and co-segmentation via deep learning. Comput. Aided Geom. Des. 43, 39–52 (2016)MathSciNetCrossRefMATH Shu, Z.; Qi, C.; Xin, S.; Hu, C.; Wang, L.; Zhang, Y.; Liu, L.: Unsupervised 3D shape segmentation and co-segmentation via deep learning. Comput. Aided Geom. Des. 43, 39–52 (2016)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Sidi, O.; van Kaick, O.; Kleiman, Y.; Zhang, H.; Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)CrossRef Sidi, O.; van Kaick, O.; Kleiman, Y.; Zhang, H.; Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)CrossRef
35.
Zurück zum Zitat van Kaick, O.; Tagliasacchi, A.; Sidi, O.; Zhang, H.; Cohen-Or, D.; Wolf, L.; Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30(2), 553–562 (2011)CrossRef van Kaick, O.; Tagliasacchi, A.; Sidi, O.; Zhang, H.; Cohen-Or, D.; Wolf, L.; Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30(2), 553–562 (2011)CrossRef
36.
Zurück zum Zitat Wang, P.; Gan, Y.; Shui, P.; Yu, F.; Zhang, Y.; Chen, S.; Sun, Z.: 3D shape segmentation via shape fully convolutional networks. Comput. Graph. 70, 128–139 (2018). CAD/Graphics 2017CrossRef Wang, P.; Gan, Y.; Shui, P.; Yu, F.; Zhang, Y.; Chen, S.; Sun, Z.: 3D shape segmentation via shape fully convolutional networks. Comput. Graph. 70, 128–139 (2018). CAD/Graphics 2017CrossRef
37.
Zurück zum Zitat Wang, Y.; Xie, Z.; Xu, K.; Dou, Y.; Lei, Y.: An efficient and effective convolutional auto-encoder extreme learning machine network for 3D feature learning. Neurocomputing 174, 988–998 (2016)CrossRef Wang, Y.; Xie, Z.; Xu, K.; Dou, Y.; Lei, Y.: An efficient and effective convolutional auto-encoder extreme learning machine network for 3D feature learning. Neurocomputing 174, 988–998 (2016)CrossRef
38.
Zurück zum Zitat Wu, Z.; Wang, Y.; Shou, R.; Chen, B.; Liu, X.: SMI 2013: unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput. Graph. 37(6), 628–637 (2013)CrossRef Wu, Z.; Wang, Y.; Shou, R.; Chen, B.; Liu, X.: SMI 2013: unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput. Graph. 37(6), 628–637 (2013)CrossRef
39.
Zurück zum Zitat Xie, Z.; Xu, K.; Liu, L.; Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. Comput. Graph. Forum 33(5), 85–95 (2014)CrossRef Xie, Z.; Xu, K.; Liu, L.; Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. Comput. Graph. Forum 33(5), 85–95 (2014)CrossRef
40.
Zurück zum Zitat Xu, H.; Dong, M.; Zhong, Z.: Directionally convolutional networks for 3d shape segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2717–2726 (2018) Xu, H.; Dong, M.; Zhong, Z.: Directionally convolutional networks for 3d shape segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2717–2726 (2018)
41.
Zurück zum Zitat Xu, K.; Kim, V.G.; Huang, Q.; Mitra, N.; Kalogerakis, E.: Data-driven shape analysis and processing. In: SIGGRAPH ASIA 2016 Courses, SA ’16, pp. 4:1–4:38. ACM, New York, NY, USA (2016) Xu, K.; Kim, V.G.; Huang, Q.; Mitra, N.; Kalogerakis, E.: Data-driven shape analysis and processing. In: SIGGRAPH ASIA 2016 Courses, SA ’16, pp. 4:1–4:38. ACM, New York, NY, USA (2016)
42.
Zurück zum Zitat Xu, K.; Li, H.; Zhang, H.; Cohen-Or, D.; Xiong, Y.; Cheng, Z.-Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29(6), 184:1–184:10 (2010)CrossRef Xu, K.; Li, H.; Zhang, H.; Cohen-Or, D.; Xiong, Y.; Cheng, Z.-Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29(6), 184:1–184:10 (2010)CrossRef
43.
Zurück zum Zitat Yi, L.; Su, H.; Guo, X.; Guibas, L.: Syncspeccnn: Synchronized spectral CNN for 3D shape segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6584–6592 (2017) Yi, L.; Su, H.; Guo, X.; Guibas, L.: Syncspeccnn: Synchronized spectral CNN for 3D shape segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6584–6592 (2017)
44.
Zurück zum Zitat Zelnik-Manor, L.; Perona, P.: Self-tuning spectral clustering. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04, pp. 1601–1608. MIT Press, Cambridge, MA, USA (2004) Zelnik-Manor, L.; Perona, P.: Self-tuning spectral clustering. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04, pp. 1601–1608. MIT Press, Cambridge, MA, USA (2004)
45.
Zurück zum Zitat Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2016)CrossRef Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2016)CrossRef
Metadaten
Titel
Unsupervised Shape Co-segmentation Based on Transformation Network
Publikationsdatum
02.07.2019
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 11/2019
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04015-1

Weitere Artikel der Ausgabe 11/2019

Arabian Journal for Science and Engineering 11/2019 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

Brain Tumor Detection and Segmentation in MR Images Using Deep Learning

Research Article - Computer Engineering and Computer Science

Prediction Using Cuckoo Search Optimized Echo State Network

Research Article - Computer Engineering and Computer Science

Bayesian Versus Convolutional Networks for Arabic Handwriting Recognition

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.