Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.04.2017 | Ausgabe 11/2017

The Journal of Supercomputing 11/2017

Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering

Zeitschrift:
The Journal of Supercomputing > Ausgabe 11/2017
Autoren:
Laith Mohammad Abualigah, Ahamad Tajudin Khader

Abstract

The text clustering technique is an appropriate method used to partition a huge amount of text documents into groups. The documents size affects the text clustering by decreasing its performance. Subsequently, text documents contain sparse and uninformative features, which reduce the performance of the underlying text clustering algorithm and increase the computational time. Feature selection is a fundamental unsupervised learning technique used to select a new subset of informative text features to improve the performance of the text clustering and reduce the computational time. This paper proposes a hybrid of particle swarm optimization algorithm with genetic operators for the feature selection problem. The k-means clustering is used to evaluate the effectiveness of the obtained features subsets. The experiments were conducted using eight common text datasets with variant characteristics. The results show that the proposed algorithm hybrid algorithm (H-FSPSOTC) improved the performance of the clustering algorithm by generating a new subset of more informative features. The proposed algorithm is compared with the other comparative algorithms published in the literature. Finally, the feature selection technique encourages the clustering algorithm to obtain accurate clusters.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2017

The Journal of Supercomputing 11/2017 Zur Ausgabe

Premium Partner

    Bildnachweise