Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.08.2019 | Ausgabe 1/2020

Neural Processing Letters 1/2020

Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection

Zeitschrift:
Neural Processing Letters > Ausgabe 1/2020
Autoren:
Guofeng Lin, Wentao Fan
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, we propose an unsupervised video object segmentation approach which is mainly based on a saliency detection method and the Gaussian mixture model with Markov random field. In our approach, the saliency detection method is developed as a preprocessing technique to calculate the probability of each pixel as the target object. In contrast to traditional saliency detection methods which are normally difficult to obtain the object’s precise boundary and are therefore hard to segment consistent objects, the developed saliency detection method can calculate the saliency of each frame in the video sequence and extract the position and region of the target object with more accurate object boundary. The refined extracted object region is then taken as the prior information and incorporated into the Gaussian mixture model with Markov random field to obtain the precise pixel-wise segmentation result of each frame. The effectiveness of the proposed unsupervised video object segmentation approach is validated through experimental results using both the SegTrack and the SegTrack v2 data sets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Neural Processing Letters 1/2020 Zur Ausgabe