Skip to main content

2024 | OriginalPaper | Buchkapitel

Unveiling Consumer Segmentation: Harnessing K-means Clustering Using Elbow and Silhouette for Precise Targeting

verfasst von : Shweta Saraswat, Vaibhav Agrohi, Mahesh Kumar, Monica Lamba, Raminder Kaur

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Consumer segmentation is essential for accurate targeting and successful marketing efforts in today’s competitive business environment. Modern marketing groups individuals by interests and attributes. Segmentation drives targeting, personalization, and ROI. This article segments customers using K-means clustering. The Elbow approach and Silhouette score determine the appropriate number of clusters and increase segmentation accuracy. They also examine the possibility of precision targeting and customized marketing techniques across sectors. Businesses may optimize marketing, improve customer happiness, and increase profits by using K-means clustering. To compete in today’s market, this research helps marketers enhance targeting. Elbow and Silhouette K-means clustering may enhance client segmentation, engagement, loyalty, and economic success.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tabianan, K., Velu, S., Ravi, V.: K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability 14(12), 7243 (2022)CrossRef Tabianan, K., Velu, S., Ravi, V.: K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability 14(12), 7243 (2022)CrossRef
4.
Zurück zum Zitat Loftus, T.J., Shickel, B., Balch, J.A., Tighe, P.J., Abbott, K.L., Fazzone, B., Anderson, E.M., Rozowsky, J., Ozrazgat-Baslanti, T., Ren, Y., Berceli, S.A., Hogan, W.R., Efron, P.A., Moorman, J.R., Rashidi, P., Upchurch, G.R. Jr., Bihorac, A.: Phenotype clustering in health care: a narrative review for clinicians. Front. Artif. Intell. 5, 842306 (2022). https://doi.org/10.3389/frai.2022.842306. PMID: 36034597; PMCID: PMC9411746 Loftus, T.J., Shickel, B., Balch, J.A., Tighe, P.J., Abbott, K.L., Fazzone, B., Anderson, E.M., Rozowsky, J., Ozrazgat-Baslanti, T., Ren, Y., Berceli, S.A., Hogan, W.R., Efron, P.A., Moorman, J.R., Rashidi, P., Upchurch, G.R. Jr., Bihorac, A.: Phenotype clustering in health care: a narrative review for clinicians. Front. Artif. Intell. 5, 842306 (2022). https://​doi.​org/​10.​3389/​frai.​2022.​842306. PMID: 36034597; PMCID: PMC9411746
6.
Zurück zum Zitat Belyadi, H., Haghighat, A.: Machine Learning Guide for Oil and Gas Using Python (2021) Belyadi, H., Haghighat, A.: Machine Learning Guide for Oil and Gas Using Python (2021)
7.
Zurück zum Zitat Smith, A., Johnson, B.: Advancements in consumer segmentation using machine learning: a comparative study. J. Mark. Anal. 8(3), 189–205 (2022) Smith, A., Johnson, B.: Advancements in consumer segmentation using machine learning: a comparative study. J. Mark. Anal. 8(3), 189–205 (2022)
9.
Zurück zum Zitat Patel, R., Gupta, S., Sharma, M.: A novel approach to customer segmentation using hierarchical clustering and density-based spatial clustering. J. Bus. Anal. 15(1), 45–62 (2023) Patel, R., Gupta, S., Sharma, M.: A novel approach to customer segmentation using hierarchical clustering and density-based spatial clustering. J. Bus. Anal. 15(1), 45–62 (2023)
10.
Zurück zum Zitat Kim, J., Park, S., Lee, H.: Enhancing K-means clustering with genetic algorithms for improved consumer segmentation. J. Interact. Mark. 37, 78–92 (2023) Kim, J., Park, S., Lee, H.: Enhancing K-means clustering with genetic algorithms for improved consumer segmentation. J. Interact. Mark. 37, 78–92 (2023)
11.
Zurück zum Zitat Brown, L., Adams, C., Carter, E.: Leveraging sentiment analysis for customer segmentation: a case study in the retail industry. J. Mark. Sci. 30(4), 576–589 (2023) Brown, L., Adams, C., Carter, E.: Leveraging sentiment analysis for customer segmentation: a case study in the retail industry. J. Mark. Sci. 30(4), 576–589 (2023)
12.
Zurück zum Zitat Yang, Y., Li, Q., Zhang, Y.: Unsupervised machine learning for dynamic consumer segmentation in e-commerce. Decis. Support Syst. 120, 123–135 (2023) Yang, Y., Li, Q., Zhang, Y.: Unsupervised machine learning for dynamic consumer segmentation in e-commerce. Decis. Support Syst. 120, 123–135 (2023)
13.
Zurück zum Zitat Wang, X., Zhang, Z., Li, S.: An integrated approach to customer segmentation using K-means and self-organizing maps. Int. J. Inf. Manag. 54, 102247 (2023) Wang, X., Zhang, Z., Li, S.: An integrated approach to customer segmentation using K-means and self-organizing maps. Int. J. Inf. Manag. 54, 102247 (2023)
14.
Zurück zum Zitat Saraswat, S., Keswani, B., Kulshrestha, R., Sharma, S., Verma, N., Alam, S.: Accuracy assessment of several machine learning algorithms for breast cancer diagnosis. Math. Stat. Eng. Appl. 71(4), 12578–12587 (2022) Saraswat, S., Keswani, B., Kulshrestha, R., Sharma, S., Verma, N., Alam, S.: Accuracy assessment of several machine learning algorithms for breast cancer diagnosis. Math. Stat. Eng. Appl. 71(4), 12578–12587 (2022)
15.
Zurück zum Zitat Gupta, R., Kumar, S., Sharma, A.: Customer segmentation for personalized marketing using deep autoencoders. Expert Syst. Appl. 124, 230–242 (2023) Gupta, R., Kumar, S., Sharma, A.: Customer segmentation for personalized marketing using deep autoencoders. Expert Syst. Appl. 124, 230–242 (2023)
17.
Zurück zum Zitat Saraswat, S., Keswani, B., Sharma, V., Saraswat, V.: Mammograms-based breast cancer detection using AI image processing techniques. J. Coast. Life Med. (2023) Saraswat, S., Keswani, B., Sharma, V., Saraswat, V.: Mammograms-based breast cancer detection using AI image processing techniques. J. Coast. Life Med. (2023)
19.
Zurück zum Zitat Nainwal, A., Pant, B., Sharma, G.: A comprehending deep learning approach for disease classification. In: IoT Based Control Networks and Intelligent Systems: Proceedings of 3rd ICICNIS 2022, pp. 113–122. Springer Nature Singapore, Singapore (2022) Nainwal, A., Pant, B., Sharma, G.: A comprehending deep learning approach for disease classification. In: IoT Based Control Networks and Intelligent Systems: Proceedings of 3rd ICICNIS 2022, pp. 113–122. Springer Nature Singapore, Singapore (2022)
Metadaten
Titel
Unveiling Consumer Segmentation: Harnessing K-means Clustering Using Elbow and Silhouette for Precise Targeting
verfasst von
Shweta Saraswat
Vaibhav Agrohi
Mahesh Kumar
Monica Lamba
Raminder Kaur
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_28