Skip to main content

2011 | OriginalPaper | Buchkapitel

Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes

verfasst von : V. Neves, H. M. Coley, J. McFadden, S. R. P. Silva

Erschienen in: Carbon Nanotubes for Biomedical Applications

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) exhibit unique size, shape and physical properties, which make them promising candidates for biomedical applications. In particular, carbon nanotubes have been intensively studied for conjugation with pre-existing therapeutic agents for more effective targeting, as a result of their ability to cross cell membranes. However, to utilise them effectively in biological systems it is extremely important to understand how they behave at the cellular level and their distribution in vivo. Additionally, in order to consider carbon nanotubes as candidate delivery systems of therapeutic agents it is important to ascertain their fate in vivo, but also take into account many factors, such as solubility, stability and clearance. Issues surrounding their short term and long term safety are currently the subject of toxicology testing. Herein, we propose to summarize the main findings on the uptake, trafficking and biodistribution of carbon nanotubes, with special focus on functionalized carbon nanotubes for delivery of therapeutic agents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)CrossRef Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)CrossRef
2.
Zurück zum Zitat Shaffer, C.: Nanomedicine transforms drug delivery. Drug Discov. Today 10(23–24), 1581–1582 (2005)CrossRef Shaffer, C.: Nanomedicine transforms drug delivery. Drug Discov. Today 10(23–24), 1581–1582 (2005)CrossRef
3.
Zurück zum Zitat Alexis, F., et al.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)CrossRef Alexis, F., et al.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)CrossRef
4.
Zurück zum Zitat James, N.D., et al.: Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R Coll. Radiol.) 6(5), 294–296 (1994)CrossRef James, N.D., et al.: Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R Coll. Radiol.) 6(5), 294–296 (1994)CrossRef
5.
Zurück zum Zitat Muggia, F.M.: Doxil in breast cancer. J. Clin. Oncol. 16(2), 811–812 (1998)CrossRef Muggia, F.M.: Doxil in breast cancer. J. Clin. Oncol. 16(2), 811–812 (1998)CrossRef
6.
Zurück zum Zitat Schluep, T., et al.: Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12(5), 1606–1614 (2006)CrossRef Schluep, T., et al.: Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12(5), 1606–1614 (2006)CrossRef
7.
Zurück zum Zitat Pridgen, E.M., Langer, R., Farokhzad, O.C.: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5), 669–680 (2007)CrossRef Pridgen, E.M., Langer, R., Farokhzad, O.C.: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5), 669–680 (2007)CrossRef
8.
Zurück zum Zitat Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25(1), 55–71 (2008)CrossRef Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25(1), 55–71 (2008)CrossRef
9.
Zurück zum Zitat Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001) Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)
10.
Zurück zum Zitat Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)CrossRef Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)CrossRef
11.
Zurück zum Zitat Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRef Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRef
12.
Zurück zum Zitat Simionescu, M., Simionescu, N., Palade, G.E.: Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60(1), 128–152 (1974)CrossRef Simionescu, M., Simionescu, N., Palade, G.E.: Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60(1), 128–152 (1974)CrossRef
13.
Zurück zum Zitat Brigham, K.L.: Estimations of permeability properties of pulmonary capillaries (continuous endothelium). Physiologist 23(1), 44–46 (1980) Brigham, K.L.: Estimations of permeability properties of pulmonary capillaries (continuous endothelium). Physiologist 23(1), 44–46 (1980)
14.
Zurück zum Zitat Ryan, U.S., et al.: Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7(1), 181–190 (1975)CrossRef Ryan, U.S., et al.: Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7(1), 181–190 (1975)CrossRef
15.
Zurück zum Zitat Braet, F., et al.: Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70(3), 230–242 (2007)CrossRef Braet, F., et al.: Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70(3), 230–242 (2007)CrossRef
16.
Zurück zum Zitat Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)CrossRef Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)CrossRef
17.
Zurück zum Zitat Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15(7–8), 457–464 (2007)CrossRef Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15(7–8), 457–464 (2007)CrossRef
18.
Zurück zum Zitat Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95(8), 4607–4612 (1998)CrossRef Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95(8), 4607–4612 (1998)CrossRef
19.
Zurück zum Zitat Sanhai, W.R., et al.: Seven challenges for nanomedicine. Nat. Nanotechnol. 3(5), 242–244 (2008)CrossRef Sanhai, W.R., et al.: Seven challenges for nanomedicine. Nat. Nanotechnol. 3(5), 242–244 (2008)CrossRef
20.
Zurück zum Zitat Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004) Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004)
21.
Zurück zum Zitat Pantarotto, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)CrossRef Pantarotto, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)CrossRef
22.
Zurück zum Zitat Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef
23.
Zurück zum Zitat Lopez, C.F., et al.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101(13), 4431–4434 (2004)CrossRef Lopez, C.F., et al.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101(13), 4431–4434 (2004)CrossRef
24.
Zurück zum Zitat Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)CrossRef Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)CrossRef
25.
Zurück zum Zitat Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef
26.
Zurück zum Zitat Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef
27.
Zurück zum Zitat Cherukuri, P., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)CrossRef Cherukuri, P., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)CrossRef
28.
Zurück zum Zitat Meinke, M., et al.: Chemometric determination of blood parameters using visible-near-infrared spectra. Appl. Spectrosc. 59(6), 826–835 (2005)CrossRef Meinke, M., et al.: Chemometric determination of blood parameters using visible-near-infrared spectra. Appl. Spectrosc. 59(6), 826–835 (2005)CrossRef
29.
Zurück zum Zitat Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939–945 (2007)CrossRef Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939–945 (2007)CrossRef
30.
Zurück zum Zitat Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)CrossRef Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)CrossRef
31.
Zurück zum Zitat Jorio, A., et al.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)CrossRef Jorio, A., et al.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)CrossRef
32.
Zurück zum Zitat Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)MATHCrossRef Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)MATHCrossRef
33.
Zurück zum Zitat Strano, M.S., et al.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3(8), 1091–1096 (2003)CrossRef Strano, M.S., et al.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3(8), 1091–1096 (2003)CrossRef
34.
Zurück zum Zitat Doorn, S.K., et al.: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A Mater. Sci. Process. 78(8), 1147–1155 (2004)CrossRef Doorn, S.K., et al.: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A Mater. Sci. Process. 78(8), 1147–1155 (2004)CrossRef
35.
Zurück zum Zitat Chin, S.F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236–1244 (2007)CrossRef Chin, S.F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236–1244 (2007)CrossRef
36.
Zurück zum Zitat Yehia, H., et al.: Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5(1), 8 (2007)CrossRef Yehia, H., et al.: Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5(1), 8 (2007)CrossRef
37.
Zurück zum Zitat Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 434001–434007 (2009)CrossRef Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 434001–434007 (2009)CrossRef
38.
Zurück zum Zitat Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008)CrossRef Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008)CrossRef
39.
Zurück zum Zitat Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007)CrossRef Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007)CrossRef
40.
Zurück zum Zitat Jin, H., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)CrossRef Jin, H., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)CrossRef
41.
Zurück zum Zitat Lacerda, L., et al.: Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 19(11), 1480–1484 (2007)CrossRef Lacerda, L., et al.: Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 19(11), 1480–1484 (2007)CrossRef
42.
Zurück zum Zitat Singh, R., et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)CrossRef Singh, R., et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)CrossRef
43.
Zurück zum Zitat Maynard, A.D., et al.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67(1), 87–107 (2004)CrossRef Maynard, A.D., et al.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67(1), 87–107 (2004)CrossRef
44.
Zurück zum Zitat Huczko, A., et al.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109(34), 16244–16251 (2005)CrossRef Huczko, A., et al.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109(34), 16244–16251 (2005)CrossRef
45.
Zurück zum Zitat Lam, C.W., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef Lam, C.W., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef
46.
Zurück zum Zitat Warheit, D.B., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef Warheit, D.B., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef
47.
Zurück zum Zitat Shvedova, A.A., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)CrossRef Shvedova, A.A., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)CrossRef
48.
Zurück zum Zitat Yokoyama, A., et al.: Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett. 5(1), 157–161 (2005)CrossRef Yokoyama, A., et al.: Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett. 5(1), 157–161 (2005)CrossRef
49.
Zurück zum Zitat Sato, Y., et al.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1(2), 176–182 (2005)CrossRef Sato, Y., et al.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1(2), 176–182 (2005)CrossRef
50.
Zurück zum Zitat Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)CrossRef Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)CrossRef
51.
Zurück zum Zitat Sayes, C.M., et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2), 135–142 (2006)CrossRef Sayes, C.M., et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2), 135–142 (2006)CrossRef
52.
Zurück zum Zitat Wang, H., et al.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)CrossRef Wang, H., et al.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)CrossRef
53.
Zurück zum Zitat Lacerda, L., et al.: Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225–230 (2008)CrossRef Lacerda, L., et al.: Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225–230 (2008)CrossRef
54.
Zurück zum Zitat Lacerda, L., et al.: Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)CrossRef Lacerda, L., et al.: Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)CrossRef
55.
Zurück zum Zitat Lacerda, L., et al.: Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008)CrossRef Lacerda, L., et al.: Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008)CrossRef
56.
Zurück zum Zitat Cherukuri, P., et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103(50), 18882–18886 (2006)CrossRef Cherukuri, P., et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103(50), 18882–18886 (2006)CrossRef
57.
Zurück zum Zitat Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef
58.
Zurück zum Zitat Zavaleta, C., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)CrossRef Zavaleta, C., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)CrossRef
59.
Zurück zum Zitat Liu, Z., et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008)CrossRef Liu, Z., et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008)CrossRef
Metadaten
Titel
Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes
verfasst von
V. Neves
H. M. Coley
J. McFadden
S. R. P. Silva
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_9

Neuer Inhalt