Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Usage of Poly-Ether-Ether-Ketone Polymer for the Biomedical Application—A Critical Review

verfasst von: M. Ajay Kumar, M. S. Khan, S. B. Mishra

Erschienen in: Advances in Lightweight Materials and Structures

Verlag: Springer Singapore

share
TEILEN

Abstract

Fast growing applications of 3D printing still lacked with a hurdle of printing high functional executing polymers. Poly-ether-ether-ketone (PEEK) produces excellent mechanical properties, chemical stability, biological stability and biocompatibility, especially employable for clinical applications. Previous literature is on fabrication of biomedical polymers by additive manufacturing (AM) such as poly-carpolactone, poly-lactic acid, poly-glycolic acid, poly-ethylene and polyurethanes. Only few studies are conducted on 3D printing of PEEK is due to its high melting point, non-availability of feed stock and poor properties of printed parts. This present review paper concentrates on printing of porous architecture which will be suitable for various medical applications with the use of the PEEK material.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Skirbutis G, Dzingutė A, Masiliūnaitė V, Šulcaitė G, Žilinskas J (2017) A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija 19(1):19–23 Skirbutis G, Dzingutė A, Masiliūnaitė V, Šulcaitė G, Žilinskas J (2017) A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija 19(1):19–23
2.
Zurück zum Zitat Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869 Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869
3.
Zurück zum Zitat Toth JM (2012) Biocompatibility of poly-arylether-ether-ketone polymers. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 81–92 Toth JM (2012) Biocompatibility of poly-arylether-ether-ketone polymers. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 81–92
4.
Zurück zum Zitat Godara A, Raabe D, Green S (2007) The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Bio-Mater 3(2):209–220 Godara A, Raabe D, Green S (2007) The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Bio-Mater 3(2):209–220
5.
Zurück zum Zitat Sobieraj MC, Rimnac CM (2019) Fracture, fatigue, and notch behavior of PEEK In: PEEK biomaterials handbook. William Andrew Publishing, pp. 67–82 Sobieraj MC, Rimnac CM (2019) Fracture, fatigue, and notch behavior of PEEK In: PEEK biomaterials handbook. William Andrew Publishing, pp. 67–82
6.
Zurück zum Zitat Kandarova H, Willoughby J, de Jong W, Bachelor M, Letasiova S, Breyfogle B, de la Fonteyne L, Coleman K (2015) Development, optimization and standardization of an in vitro skin irritation test for medical devices using the reconstructed human tissue model epiderm. Toxicologist 144(1):443 Kandarova H, Willoughby J, de Jong W, Bachelor M, Letasiova S, Breyfogle B, de la Fonteyne L, Coleman K (2015) Development, optimization and standardization of an in vitro skin irritation test for medical devices using the reconstructed human tissue model epiderm. Toxicologist 144(1):443
7.
Zurück zum Zitat Kurtz SM (2012) Chemical and radiation stability of PEEK. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 75–79 Kurtz SM (2012) Chemical and radiation stability of PEEK. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 75–79
8.
Zurück zum Zitat Toth JM, Wang M, Estes BT, Scifert JL, Seim HB III, Simon Turner A (2006) Poly-ether-ether-ketone as a biomaterial for spinal applications. Biomaterials 27(3):324–334 Toth JM, Wang M, Estes BT, Scifert JL, Seim HB III, Simon Turner A (2006) Poly-ether-ether-ketone as a biomaterial for spinal applications. Biomaterials 27(3):324–334
9.
Zurück zum Zitat Lovald S, Kurtz SM (2012) Applications of poly-ether-ether-ketone in trauma, arthroscopy, and cranial defect repair. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 243–260 Lovald S, Kurtz SM (2012) Applications of poly-ether-ether-ketone in trauma, arthroscopy, and cranial defect repair. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 243–260
10.
Zurück zum Zitat Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthopaedic Surgery 6(2):81–89 Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthopaedic Surgery 6(2):81–89
11.
Zurück zum Zitat Jarman-Smith M, Brady M, Kurtz SM, Cordaro NM, Walsh WR (2012) Porosity in poly-aryl-ether- ether-ketone. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 181–199 Jarman-Smith M, Brady M, Kurtz SM, Cordaro NM, Walsh WR (2012) Porosity in poly-aryl-ether- ether-ketone. In: PEEK biomaterials handbook. William Andrew Publishing, pp. 181–199
12.
Zurück zum Zitat Lee VC (2014) Medical applications for 3D printing: current and projected uses. Pharm Therap 39(10):704 Lee VC (2014) Medical applications for 3D printing: current and projected uses. Pharm Therap 39(10):704
13.
Zurück zum Zitat Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials 11(2):288 Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials 11(2):288
14.
Zurück zum Zitat Aishwarya V, Saranya D (2016) A review on scaffolds used in tissue engineering and various fabrication techniques. Int J Res Biosci 5:1–9 Aishwarya V, Saranya D (2016) A review on scaffolds used in tissue engineering and various fabrication techniques. Int J Res Biosci 5:1–9
15.
Zurück zum Zitat Siddiq AR, Kennedy AR (2015) Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Mater Sci Eng, C 47:180–188 Siddiq AR, Kennedy AR (2015) Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Mater Sci Eng, C 47:180–188
16.
Zurück zum Zitat Deng X, Zeng Z, Peng B, Yan S, Ke W (2018) Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 11(2):216 Deng X, Zeng Z, Peng B, Yan S, Ke W (2018) Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 11(2):216
17.
Zurück zum Zitat Zhao X, Xiong D, Liu Y (2018) Improving surface wettability and lubrication of poly-ether-ether-ketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel. J Mechl Behav Biomed Mater 82:27–34 Zhao X, Xiong D, Liu Y (2018) Improving surface wettability and lubrication of poly-ether-ether-ketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel. J Mechl Behav Biomed Mater 82:27–34
18.
Zurück zum Zitat Singh S, Prakash C, Ramakrishna S (2019) 3D printing of poly-ether-ether-ketone for biomedical applications. Eur Polym J Singh S, Prakash C, Ramakrishna S (2019) 3D printing of poly-ether-ether-ketone for biomedical applications. Eur Polym J
19.
Zurück zum Zitat Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterization of three-dimensional poly (ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng Part H J Eng Med 219(3):183–194 Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterization of three-dimensional poly (ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng Part H J Eng Med 219(3):183–194
20.
Zurück zum Zitat Vaezi M, Yang S (2015) Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyping 10(3):123–135 Vaezi M, Yang S (2015) Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyping 10(3):123–135
21.
Zurück zum Zitat Punchak M, Chung LK, Lagman C, Bui TT, Lazareff J, Rezzadeh K, Jarrahy R, Yang I (2017) Outcomes following poly-etherether-ketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci 41:30–35 Punchak M, Chung LK, Lagman C, Bui TT, Lazareff J, Rezzadeh K, Jarrahy R, Yang I (2017) Outcomes following poly-etherether-ketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci 41:30–35
22.
Zurück zum Zitat Vaezi M, Yang S (2014) Freeform fabrication of nano-biomaterials using 3D printing. In: Rapid prototyping of biomaterials. Wood-head Publishing, pp 16–74 Vaezi M, Yang S (2014) Freeform fabrication of nano-biomaterials using 3D printing. In: Rapid prototyping of biomaterials. Wood-head Publishing, pp 16–74
23.
Zurück zum Zitat Valentan B, Kadivnik Ž, Brajlih T, Anderson A, Drstvenšek I (2013) Processing poly (ether etherketone) a 3D printer for thermoplastic modelling. Materiali in tehnologije 47(6):715–721 Valentan B, Kadivnik Ž, Brajlih T, Anderson A, Drstvenšek I (2013) Processing poly (ether etherketone) a 3D printer for thermoplastic modelling. Materiali in tehnologije 47(6):715–721
24.
Zurück zum Zitat Najeeb S, Zafar MS, Khurshid Z, Siddiqui F (2016) Applications of poly-ether-ether-ketone (PEEK) in oral implantology and prosthodontics. J Prosthodontic Res 60(1):12–19 Najeeb S, Zafar MS, Khurshid Z, Siddiqui F (2016) Applications of poly-ether-ether-ketone (PEEK) in oral implantology and prosthodontics. J Prosthodontic Res 60(1):12–19
Metadaten
Titel
Usage of Poly-Ether-Ether-Ketone Polymer for the Biomedical Application—A Critical Review
verfasst von
M. Ajay Kumar
M. S. Khan
S. B. Mishra
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7827-4_37

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.