Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2020

01.08.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Use of a Spin-Flop State for the Creation of Spin-Valve Elements for a Full Wheatstone Bridge

verfasst von: M. A. Milyaev, L. I. Naumova, R. S. Zavornitsyn, I. K. Maksimova, A. Yu. Pavlova, V. V. Proglyado, V. V. Ustinov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A method of universal thermomagnetic treatment forming a pairwise opposite exchange bias in spin valves, which are sensor elements of a Wheatstone bridge, has been developed. The method is based on the formation of two magnetic phases in a spin valve upon the transition of a synthetic antiferromagnet into a spin-flop state. Thermomagnetic treatment in a two-phase state leads to the formation of a pairwise mutually opposite exchange bias in different elements of a Wheatstone bridge. The direction of a formed exchange bias is governed by the uniaxial anisotropy of every element.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C. Y. Hung, M. Zhao, and S. Tran, “Spin valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/FeMn,” J. Appl. Phys. 85, 5528–5530 (1999).CrossRef Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C. Y. Hung, M. Zhao, and S. Tran, “Spin valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/FeMn,” J. Appl. Phys. 85, 5528–5530 (1999).CrossRef
2.
Zurück zum Zitat Y. F. Li, R. H. Yu, D. V. Dimitrov, and J. Q. Xiao, “Memory effect and temperature behavior in spin valves with and without antiferromagnet subsystems,” J. Appl. Phys. 80, 5692–5695 (1999).CrossRef Y. F. Li, R. H. Yu, D. V. Dimitrov, and J. Q. Xiao, “Memory effect and temperature behavior in spin valves with and without antiferromagnet subsystems,” J. Appl. Phys. 80, 5692–5695 (1999).CrossRef
3.
Zurück zum Zitat K. -M. N. Lenssen, A. E. T. Kuiper, J. J. van der Broek, R. A. F. van der Rijt, and A. van Loon, “Sensor properties of a robust giant magnetoresistance material system at elevated temperatures,” J. Appl. Phys. 87, 6665–6667 (2000).CrossRef K. -M. N. Lenssen, A. E. T. Kuiper, J. J. van der Broek, R. A. F. van der Rijt, and A. van Loon, “Sensor properties of a robust giant magnetoresistance material system at elevated temperatures,” J. Appl. Phys. 87, 6665–6667 (2000).CrossRef
4.
Zurück zum Zitat C. Reig, M.-D. Cubells-Beltran, and D. R. Munoz, “Magnetic field sensors based on giant magnetoresistance (GMR) technology: Applications in electrical current sensing”, Sensors 9, 7919–7942 (2009).CrossRef C. Reig, M.-D. Cubells-Beltran, and D. R. Munoz, “Magnetic field sensors based on giant magnetoresistance (GMR) technology: Applications in electrical current sensing”, Sensors 9, 7919–7942 (2009).CrossRef
5.
Zurück zum Zitat O. Ueberschär, M. J. Almeida, P. Matthes, M. Müller, R. Ecke, R. Rückriem, J. Schuster, H. Exner, and S. E. Schulz, “Optimized monolithic 2-D spin-valve sensor for high-sensitivity compass applications,” IEEE Trans. Magn. 51, 4002404 (2015).CrossRef O. Ueberschär, M. J. Almeida, P. Matthes, M. Müller, R. Ecke, R. Rückriem, J. Schuster, H. Exner, and S. E. Schulz, “Optimized monolithic 2-D spin-valve sensor for high-sensitivity compass applications,” IEEE Trans. Magn. 51, 4002404 (2015).CrossRef
6.
Zurück zum Zitat M. -D. Cubells-Beltran, C. Reig, and D. R. F. Munoz, S. I. P. Cardoso de Freitas, and P. J. P. de Freitas, “Full wheatstone bridge spin-valve based sensors for IC currents monitoring,” IEEE Sens. J. 9, 1756–1762 (2009).CrossRef M. -D. Cubells-Beltran, C. Reig, and D. R. F. Munoz, S. I. P. Cardoso de Freitas, and P. J. P. de Freitas, “Full wheatstone bridge spin-valve based sensors for IC currents monitoring,” IEEE Sens. J. 9, 1756–1762 (2009).CrossRef
7.
Zurück zum Zitat P. P. Freitas, R. Ferreira, and S. Cardoso, “Spintronic Sensors,” Proc. IEEE. 104, 1894–1918 (2016).CrossRef P. P. Freitas, R. Ferreira, and S. Cardoso, “Spintronic Sensors,” Proc. IEEE. 104, 1894–1918 (2016).CrossRef
8.
Zurück zum Zitat R. Ferreira, E. Paz, P. P. Freitas, J. Ribeiro, J. Germano, and L. Sousa, “2-axis magnetometers based on full wheatstone bridges incorporating magnetic tunnel junctions connected in series,” IEEE Trans. Magn. 48, 4107–4110 (2012).CrossRef R. Ferreira, E. Paz, P. P. Freitas, J. Ribeiro, J. Germano, and L. Sousa, “2-axis magnetometers based on full wheatstone bridges incorporating magnetic tunnel junctions connected in series,” IEEE Trans. Magn. 48, 4107–4110 (2012).CrossRef
9.
Zurück zum Zitat V. S. Luong, A. T. Nguyen, and T. H. D. Tran, “Antiparallel-pinned spin valves with modified artificial antiferromagnetic layer for full-bridge magnetic sensors,” IEEE Trans. Magn. 54, 4001705 (2018). V. S. Luong, A. T. Nguyen, and T. H. D. Tran, “Antiparallel-pinned spin valves with modified artificial antiferromagnetic layer for full-bridge magnetic sensors,” IEEE Trans. Magn. 54, 4001705 (2018).
10.
Zurück zum Zitat H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey, “The spin flop of synthetic antiferromagnetic films,” J. Appl. Phys. 87, 5055–5057 (2000).CrossRef H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey, “The spin flop of synthetic antiferromagnetic films,” J. Appl. Phys. 87, 5055–5057 (2000).CrossRef
11.
Zurück zum Zitat J. Son, S. Lee, San. Lee, S. Kim, and J. Hong, “Dependence of exchange coupling direction on cooling-field strength,” J. Appl. Phys. 110, 053908-1 (2011).CrossRef J. Son, S. Lee, San. Lee, S. Kim, and J. Hong, “Dependence of exchange coupling direction on cooling-field strength,” J. Appl. Phys. 110, 053908-1 (2011).CrossRef
12.
Zurück zum Zitat B. Negulescu, D. Lacour, M. Hehn, A. Gerken, J. Paul, and C. Duret, “On the control of spin flop in synthetic antiferromagnetic films,” J. Appl. Phys. 109, 103911(1–9) (2011). B. Negulescu, D. Lacour, M. Hehn, A. Gerken, J. Paul, and C. Duret, “On the control of spin flop in synthetic antiferromagnetic films,” J. Appl. Phys. 109, 103911(1–9) (2011).
13.
Zurück zum Zitat M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, N. A. Kulesh, E. I. Patrakov, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, N. A. Kulesh, E. I. Patrakov, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef
14.
Zurück zum Zitat M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef
15.
Zurück zum Zitat T. Chernyshova, L. Naumova, A. Pavlova, I. Maksimova, M. Milyaev, V. Proglyado, E. Patrakov, and V. Ustinov, “Anhysteretic magnetic reversal of meander-shaped spin valve with synthetic antiferromagnet,” Sens. Actuators, A 285, 73–79 (2019).CrossRef T. Chernyshova, L. Naumova, A. Pavlova, I. Maksimova, M. Milyaev, V. Proglyado, E. Patrakov, and V. Ustinov, “Anhysteretic magnetic reversal of meander-shaped spin valve with synthetic antiferromagnet,” Sens. Actuators, A 285, 73–79 (2019).CrossRef
16.
Zurück zum Zitat R. S. Beach, J. McCord, P. Webb, and D. Mauri, “Orthogonal pinning of two ferromagnetic layers in a synthetic spin valve,” Appl. Phys. Lett. 80, 4576–4578 (2002).CrossRef R. S. Beach, J. McCord, P. Webb, and D. Mauri, “Orthogonal pinning of two ferromagnetic layers in a synthetic spin valve,” Appl. Phys. Lett. 80, 4576–4578 (2002).CrossRef
17.
Zurück zum Zitat S. Yan, Z. Cao, Z. Guo, Z. Zheng, A. Cao, Y. Qi, Q. Leng, and W. Zhao, “Design and fabrication of full wheatstone-bridge-based angular GMR sensors,” Sensors. 18, 1832 (2018).CrossRef S. Yan, Z. Cao, Z. Guo, Z. Zheng, A. Cao, Y. Qi, Q. Leng, and W. Zhao, “Design and fabrication of full wheatstone-bridge-based angular GMR sensors,” Sensors. 18, 1832 (2018).CrossRef
18.
Zurück zum Zitat L. I. Naumova, M. A. Milyaev, R. S. Zavornitsin, A. Yu. Pavlova, I. K. Maksimova, T. P. Krinitsina, T. A. Chernyshova, V. V. Proglyado, and V. V. Ustinov, “High-sensitive sensing elements based on spin valves with antiferromagnetic interlayer coupling,” Phys. Met. Metallogr. 120, 653–659 (2019).CrossRef L. I. Naumova, M. A. Milyaev, R. S. Zavornitsin, A. Yu. Pavlova, I. K. Maksimova, T. P. Krinitsina, T. A. Chernyshova, V. V. Proglyado, and V. V. Ustinov, “High-sensitive sensing elements based on spin valves with antiferromagnetic interlayer coupling,” Phys. Met. Metallogr. 120, 653–659 (2019).CrossRef
19.
Zurück zum Zitat Z. Qian, D. Wang, J. Daughton, M. Tondra, C. Nordman, and A. Popple, “Linear spin-valve bridge sensing devices,” IEEE Trans. Magn. 40, 2643–2645 (2004).CrossRef Z. Qian, D. Wang, J. Daughton, M. Tondra, C. Nordman, and A. Popple, “Linear spin-valve bridge sensing devices,” IEEE Trans. Magn. 40, 2643–2645 (2004).CrossRef
Metadaten
Titel
Use of a Spin-Flop State for the Creation of Spin-Valve Elements for a Full Wheatstone Bridge
verfasst von
M. A. Milyaev
L. I. Naumova
R. S. Zavornitsyn
I. K. Maksimova
A. Yu. Pavlova
V. V. Proglyado
V. V. Ustinov
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20080050

Weitere Artikel der Ausgabe 8/2020

Physics of Metals and Metallography 8/2020 Zur Ausgabe