Skip to main content
Erschienen in: Neural Processing Letters 1/2021

07.01.2021

Use of Neural Network Based Prediction Algorithms for Powering Up Smart Portable Accessories

verfasst von: Zakria Qadir, Enver Ever, Canras Batunlu

Erschienen in: Neural Processing Letters | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Emerging Trends in the use of smart portable accessories, particularly within the context of the Internet of Things (IoT), where smart sensor devices are employed for data gathering, require advancements in energy management mechanisms. This study aims to provide an intelligent energy management mechanism for wearable/portable devices through the use of predictions, monitoring, and analysis of the performance indicators for energy harvesting, majorly focusing on the hybrid PV-wind systems. To design a robust and precise model, prediction algorithms are compared and analysed for an efficient decision support system. Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) prediction algorithms are used to develop a Shallow Neural Network (SNN) for time series prediction. The proposed SNN model uses a closed-loop NARX recurrent dynamic neural network to predict the active power and energy of a hybrid system based on the experimental data of solar irradiation, wind speed, wind direction, humidity, precipitation, ambient temperature and atmospheric pressure collected from Jan 1st 2015 to Dec 26th 2015. The historical hourly metrological data set is established using calibrated sensors deployed at Middle East Technical University (METU), NCC. The accessory considered in this study is called as Smart Umbrella System (SUS), which uses a Raspberry Pi module to fetch the weather data from the current location and store it in the cloud to be processed using SNN classified prediction algorithms. The results obtained show that using the SNN model, it is possible to obtain predictions with 0.004 error rate in a computationally efficient way within 20 s. With the experiments, we are able to observe that for the period of observation, the energy harvested is 178 Wh/d, where the system estimates energy as 176.5 Wh/d, powering the portable accessories accurately.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang Z and Kouzani AZ (2019) Implementation of DNNs on IoT devices. Neural Comput Appl pp. 1–30 Zhang Z and Kouzani AZ (2019) Implementation of DNNs on IoT devices. Neural Comput Appl pp. 1–30
2.
Zurück zum Zitat Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596CrossRef Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596CrossRef
3.
Zurück zum Zitat García-Olivares A, Solé J, Osychenko O (2018) Transportation in a 100% renewable energy system. Energy Convers Manag 158:266–285CrossRef García-Olivares A, Solé J, Osychenko O (2018) Transportation in a 100% renewable energy system. Energy Convers Manag 158:266–285CrossRef
4.
Zurück zum Zitat Wang T, He X, Huang T, Li C, Zhang W (2017) Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid. Neural Netw 93:126–136MATHCrossRef Wang T, He X, Huang T, Li C, Zhang W (2017) Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid. Neural Netw 93:126–136MATHCrossRef
5.
Zurück zum Zitat López E, Valle C, Allende H, Gil E, Madsen H (2018) Wind power forecasting based on echo state networks and long short-term memory. Energies 11(3):526CrossRef López E, Valle C, Allende H, Gil E, Madsen H (2018) Wind power forecasting based on echo state networks and long short-term memory. Energies 11(3):526CrossRef
6.
Zurück zum Zitat Wei Y, Venayagamoorthy GK (2017) Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system. Neural Netw 93:21–35CrossRef Wei Y, Venayagamoorthy GK (2017) Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system. Neural Netw 93:21–35CrossRef
7.
Zurück zum Zitat Reza MS, Ciobotaru M, Agelidis VG (2015) Power system frequency estimation by using a Newton-type technique for smart meters. IEEE Trans Instrum Meas 64(3):615–624CrossRef Reza MS, Ciobotaru M, Agelidis VG (2015) Power system frequency estimation by using a Newton-type technique for smart meters. IEEE Trans Instrum Meas 64(3):615–624CrossRef
8.
Zurück zum Zitat Tang Y, Yang J, Yan J, He H (2015) Intelligent load frequency controller using GrADP for island smart grid with electric vehicles and renewable resources. Neurocomputing 170:406–416CrossRef Tang Y, Yang J, Yan J, He H (2015) Intelligent load frequency controller using GrADP for island smart grid with electric vehicles and renewable resources. Neurocomputing 170:406–416CrossRef
12.
Zurück zum Zitat Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990CrossRef Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990CrossRef
13.
Zurück zum Zitat Pedro HTC, Coimbra CFM (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86(7):2017–2028CrossRef Pedro HTC, Coimbra CFM (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86(7):2017–2028CrossRef
14.
Zurück zum Zitat Inman RH, Pedro HTC, Coimbra CFM (2013) Solar forecasting methods for renewable energy integration. Prog Energy Combust Sci 39(6):535–576CrossRef Inman RH, Pedro HTC, Coimbra CFM (2013) Solar forecasting methods for renewable energy integration. Prog Energy Combust Sci 39(6):535–576CrossRef
15.
Zurück zum Zitat Lew D et al (2011) Western wind and solar integration study. Energynautics GmbH, Langen, Germany Lew D et al (2011) Western wind and solar integration study. Energynautics GmbH, Langen, Germany
16.
Zurück zum Zitat . Saberian A, Hizam H, Radzi MAM, Ab Kadir MZA and Mirzaei M (2014) Modelling and prediction of photovoltaic power output using artificial neural networks. Int J Photoenergy . Saberian A, Hizam H, Radzi MAM, Ab Kadir MZA and Mirzaei M (2014) Modelling and prediction of photovoltaic power output using artificial neural networks. Int J Photoenergy
17.
Zurück zum Zitat Krasnopolsky VM, Schiller H (2003) Some neural network applications in environmental sciences. Part I: Forward and inverse problems in geophysical remote measurements. Neural Netw 16(3):321–334CrossRef Krasnopolsky VM, Schiller H (2003) Some neural network applications in environmental sciences. Part I: Forward and inverse problems in geophysical remote measurements. Neural Netw 16(3):321–334CrossRef
18.
Zurück zum Zitat Zhang J, Huang C (2020) Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv Differ Equ 2020:120MathSciNetCrossRef Zhang J, Huang C (2020) Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv Differ Equ 2020:120MathSciNetCrossRef
19.
Zurück zum Zitat Huang C, Yang H, Cao J (2020) Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete Contin Dyn Syst Huang C, Yang H, Cao J (2020) Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete Contin Dyn Syst
20.
Zurück zum Zitat Perera C, Liu CH, Jayawardena S (2015) The emerging internet of things marketplace from an industrial perspective: a survey. IEEE Trans Emerg Top Comput 3(4):585–598CrossRef Perera C, Liu CH, Jayawardena S (2015) The emerging internet of things marketplace from an industrial perspective: a survey. IEEE Trans Emerg Top Comput 3(4):585–598CrossRef
21.
Zurück zum Zitat Myers A, Hodges R, Jur JS (2017) Human and environmental analysis of wearable thermal energy harvesting. Energy Convers Manag 143:218–226CrossRef Myers A, Hodges R, Jur JS (2017) Human and environmental analysis of wearable thermal energy harvesting. Energy Convers Manag 143:218–226CrossRef
22.
Zurück zum Zitat Thielen M, Sigrist L, Magno M, Hierold C, Benini L (2017) Human body heat for powering wearable devices: from thermal energy to application. Energy Convers Manag 131:44–54CrossRef Thielen M, Sigrist L, Magno M, Hierold C, Benini L (2017) Human body heat for powering wearable devices: from thermal energy to application. Energy Convers Manag 131:44–54CrossRef
23.
Zurück zum Zitat M. Pakanen, T. Lappalainen, P. Roinesalo, and J. Häkkilä, "Exploring Smart Handbag Concepts Through Co-design," in Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia, New York, NY, USA, 2016, pp. 37–48. M. Pakanen, T. Lappalainen, P. Roinesalo, and J. Häkkilä, "Exploring Smart Handbag Concepts Through Co-design," in Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia, New York, NY, USA, 2016, pp. 37–48.
24.
Zurück zum Zitat Zhang R, Amft O (2018) Monitoring chewing and eating in free-living using smart eyeglasses. IEEE J Biomed Health Inf 22(1):23–32CrossRef Zhang R, Amft O (2018) Monitoring chewing and eating in free-living using smart eyeglasses. IEEE J Biomed Health Inf 22(1):23–32CrossRef
25.
Zurück zum Zitat Mahmud MS, Wang H, Esfar-E-Alam AM, Fang H (2017) A wireless health monitoring system using mobile phone accessories. IEEE Internet Things J 4(6):2009–2018CrossRef Mahmud MS, Wang H, Esfar-E-Alam AM, Fang H (2017) A wireless health monitoring system using mobile phone accessories. IEEE Internet Things J 4(6):2009–2018CrossRef
26.
Zurück zum Zitat Champlin C, Bell D, Schocken C (2017) AI medicine comes to Africa’s rural clinics. IEEE Spectr 54(5):42–48CrossRef Champlin C, Bell D, Schocken C (2017) AI medicine comes to Africa’s rural clinics. IEEE Spectr 54(5):42–48CrossRef
27.
Zurück zum Zitat Jokic P and Magno M (2017) Powering smart wearable systems with flexible solar energy harvesting. In: 2017 IEEE International symposium on circuits and systems (ISCAS), 2017, pp 1–4 Jokic P and Magno M (2017) Powering smart wearable systems with flexible solar energy harvesting. In: 2017 IEEE International symposium on circuits and systems (ISCAS), 2017, pp 1–4
28.
Zurück zum Zitat Ramsami P, Oree V (2015) A hybrid method for forecasting the energy output of photovoltaic systems. Energy Convers Manag 95:406–413CrossRef Ramsami P, Oree V (2015) A hybrid method for forecasting the energy output of photovoltaic systems. Energy Convers Manag 95:406–413CrossRef
29.
Zurück zum Zitat Mellit A, Pavan AM (2010) A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 84(5):807–821CrossRef Mellit A, Pavan AM (2010) A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 84(5):807–821CrossRef
30.
Zurück zum Zitat Lungu I, Bâra A (2016) Prediction intelligent system in the field of renewable energies through neural networks. Econ Comput Econ Cybern Stud Res 50:85–102 Lungu I, Bâra A (2016) Prediction intelligent system in the field of renewable energies through neural networks. Econ Comput Econ Cybern Stud Res 50:85–102
31.
Zurück zum Zitat Wang R, Li J, Wang J, Gao C (2018) Research and application of a hybrid wind energy forecasting system based on data processing and an optimized extreme learning machine. Energies 11(7):1712CrossRef Wang R, Li J, Wang J, Gao C (2018) Research and application of a hybrid wind energy forecasting system based on data processing and an optimized extreme learning machine. Energies 11(7):1712CrossRef
32.
Zurück zum Zitat Boroojeni KG, Amini MH, Bahrami S, Iyengar SS, Sarwat AI, Karabasoglu O (2017) A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electr Power Syst Res 142:58–73CrossRef Boroojeni KG, Amini MH, Bahrami S, Iyengar SS, Sarwat AI, Karabasoglu O (2017) A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electr Power Syst Res 142:58–73CrossRef
33.
Zurück zum Zitat Elminir HK, Azzam YA, Younes FI (2007) Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models. Energy 32(8):1513–1523CrossRef Elminir HK, Azzam YA, Younes FI (2007) Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models. Energy 32(8):1513–1523CrossRef
34.
Zurück zum Zitat İzgi E, Öztopal A, Yerli B, Kaymak MK, Şahin AD (2012) Short–mid-term solar power prediction by using artificial neural networks. Sol Energy 86(2):725–733CrossRef İzgi E, Öztopal A, Yerli B, Kaymak MK, Şahin AD (2012) Short–mid-term solar power prediction by using artificial neural networks. Sol Energy 86(2):725–733CrossRef
35.
Zurück zum Zitat Maiti S, Karan SK, Kim JK, Khatua BB (2019) Nature driven bio-piezoelectric/triboelectric nanogenerator as next-generation green energy harvester for smart and pollution free society. Adv Energy Mater 9(9):1803027CrossRef Maiti S, Karan SK, Kim JK, Khatua BB (2019) Nature driven bio-piezoelectric/triboelectric nanogenerator as next-generation green energy harvester for smart and pollution free society. Adv Energy Mater 9(9):1803027CrossRef
36.
Zurück zum Zitat Tian R, Liu Y, Koumoto K, Chen J (2019) Body heat powers future electronic skins. Joule 3(6):1399–1403CrossRef Tian R, Liu Y, Koumoto K, Chen J (2019) Body heat powers future electronic skins. Joule 3(6):1399–1403CrossRef
37.
Zurück zum Zitat Wang S, Ding L, Wang Y, Gong X (2019) Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards. Nano Energy 59:434–442CrossRef Wang S, Ding L, Wang Y, Gong X (2019) Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards. Nano Energy 59:434–442CrossRef
38.
Zurück zum Zitat Sharma H, Haque A, Jaffery ZA (2018) Solar energy harvesting wireless sensor network nodes: a survey. J Renew Sustain Energy 10(2):023704CrossRef Sharma H, Haque A, Jaffery ZA (2018) Solar energy harvesting wireless sensor network nodes: a survey. J Renew Sustain Energy 10(2):023704CrossRef
39.
Zurück zum Zitat Prodromos C, Ziogou C, Elmasides C, Sirakoulis G, Karafyllidis I, Andreadis I, Georgoulas N et al (2016) Enhancement of hybrid renewable energy systems control with neural networks applied to weather forecasting: the case of Olvio. Neural Comput Appl 27(5):1093–1118CrossRef Prodromos C, Ziogou C, Elmasides C, Sirakoulis G, Karafyllidis I, Andreadis I, Georgoulas N et al (2016) Enhancement of hybrid renewable energy systems control with neural networks applied to weather forecasting: the case of Olvio. Neural Comput Appl 27(5):1093–1118CrossRef
40.
Zurück zum Zitat Noorollahi Y, Jokar MA, Kalhor A (2016) Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manag 115:17–25CrossRef Noorollahi Y, Jokar MA, Kalhor A (2016) Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manag 115:17–25CrossRef
41.
Zurück zum Zitat Anzalchi A, Sarwat A (2017) Overview of technical specifications for grid-connected photovoltaic systems. Energy Convers Manag 152:312–327CrossRef Anzalchi A, Sarwat A (2017) Overview of technical specifications for grid-connected photovoltaic systems. Energy Convers Manag 152:312–327CrossRef
44.
Zurück zum Zitat Rajchakit G, Pratap A, Raja R, Cao J, Alzabut J, Huang C (2019) Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM NeuralNetworks with mixed delays. Mathematics 7(8):759CrossRef Rajchakit G, Pratap A, Raja R, Cao J, Alzabut J, Huang C (2019) Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM NeuralNetworks with mixed delays. Mathematics 7(8):759CrossRef
45.
Zurück zum Zitat Wei Y, Yin Li, Long X (2019) The coupling integrable couplings of the generalized coupled Burgers equation hierarchy and its Hamiltonian structure. Adv Differ Equ 2019(1):1–17MathSciNetMATHCrossRef Wei Y, Yin Li, Long X (2019) The coupling integrable couplings of the generalized coupled Burgers equation hierarchy and its Hamiltonian structure. Adv Differ Equ 2019(1):1–17MathSciNetMATHCrossRef
46.
Zurück zum Zitat Li W, Huang L, Ji J (2019) Periodic solution and its stability of a delayed Beddington–DeAngelis type predator-prey system with discontinuous control strategy. Math Methods Appl Sci 42(13):4498–4515MathSciNetMATHCrossRef Li W, Huang L, Ji J (2019) Periodic solution and its stability of a delayed Beddington–DeAngelis type predator-prey system with discontinuous control strategy. Math Methods Appl Sci 42(13):4498–4515MathSciNetMATHCrossRef
47.
Zurück zum Zitat Hu H, Yi T, Zou X (2020) On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc Am Math Soc 148(1):213–221MathSciNetMATHCrossRef Hu H, Yi T, Zou X (2020) On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc Am Math Soc 148(1):213–221MathSciNetMATHCrossRef
48.
Zurück zum Zitat Li X et al (2019) Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math Sci 39(1):229–242MathSciNetCrossRef Li X et al (2019) Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math Sci 39(1):229–242MathSciNetCrossRef
49.
50.
Zurück zum Zitat Iqbal J, Iqbal A, Arif M (2015) Levenberg–Marquardt method for solving systems of absolute value equations. J Comput Appl Math 282:134–138MathSciNetMATHCrossRef Iqbal J, Iqbal A, Arif M (2015) Levenberg–Marquardt method for solving systems of absolute value equations. J Comput Appl Math 282:134–138MathSciNetMATHCrossRef
51.
Zurück zum Zitat Liang P, Bose NK (1996) Neural network fundamentals with graphs, algorithms, and applications. McGraw-Hill Series in Electrical Computer Engineering, New York, p 1 MATH Liang P, Bose NK (1996) Neural network fundamentals with graphs, algorithms, and applications. McGraw-Hill Series in Electrical Computer Engineering, New York, p 1 MATH
52.
Zurück zum Zitat Gupta MM, Jin L and Homma N (2003) Continuous time dynamic neural networks. In: IEEE static and dynamic neural networks: from fundamentals to advanced theory Gupta MM, Jin L and Homma N (2003) Continuous time dynamic neural networks. In: IEEE static and dynamic neural networks: from fundamentals to advanced theory
53.
Zurück zum Zitat Liu B, Ma X, Jia X-C (2018) Further results on H∞ state estimation of static neural networks with time-varying delay. Neurocomputing 285:133–140CrossRef Liu B, Ma X, Jia X-C (2018) Further results on H∞ state estimation of static neural networks with time-varying delay. Neurocomputing 285:133–140CrossRef
54.
Zurück zum Zitat Liu Y, Wang T, Chen M, Shen H, Wang Y, Duan D (2017) Dissipativity-based state estimation of delayed static neural networks. Neurocomputing 247:137–143CrossRef Liu Y, Wang T, Chen M, Shen H, Wang Y, Duan D (2017) Dissipativity-based state estimation of delayed static neural networks. Neurocomputing 247:137–143CrossRef
55.
Zurück zum Zitat Huang H, Feng G, Cao J (2011) Guaranteed performance state estimation of static neural networks with time-varying delay. Neurocomputing 74(4):606–616CrossRef Huang H, Feng G, Cao J (2011) Guaranteed performance state estimation of static neural networks with time-varying delay. Neurocomputing 74(4):606–616CrossRef
56.
Zurück zum Zitat Suleiman S, Gulumbe SU, Asare BK, Abubakar M (2016) Comparative study of backpropagation algorithms in forecasting volatility of crude oil price in Nigeria. Sci J Appl Math Stat 4(3):88CrossRef Suleiman S, Gulumbe SU, Asare BK, Abubakar M (2016) Comparative study of backpropagation algorithms in forecasting volatility of crude oil price in Nigeria. Sci J Appl Math Stat 4(3):88CrossRef
57.
Zurück zum Zitat Tang R, Fong S, Deb S, Vasilakos AV, Millham RC (2018) Dynamic group optimisation algorithm for training feedforward neural networks. Neurocomputing 314:1–19CrossRef Tang R, Fong S, Deb S, Vasilakos AV, Millham RC (2018) Dynamic group optimisation algorithm for training feedforward neural networks. Neurocomputing 314:1–19CrossRef
58.
Zurück zum Zitat Li X-L, Jia C, Wang K, Wang J (2015) Trajectory tracking of nonlinear system using multiple series–parallel dynamic neural networks. Neurocomputing 168:1–12CrossRef Li X-L, Jia C, Wang K, Wang J (2015) Trajectory tracking of nonlinear system using multiple series–parallel dynamic neural networks. Neurocomputing 168:1–12CrossRef
59.
Zurück zum Zitat Jain LC (ed) (2000) Recurrent neural networks: design and applications. CRC Press, Boca Raton, FL Jain LC (ed) (2000) Recurrent neural networks: design and applications. CRC Press, Boca Raton, FL
60.
Zurück zum Zitat Kamwa I, Grondin R, Sood VK, Gagnon C, Nguyen VT, Mereb J (1996) Recurrent neural networks for phasor detection and adaptive identification in power system control and protection. IEEE Trans Instrum Meas 45(2):657–664CrossRef Kamwa I, Grondin R, Sood VK, Gagnon C, Nguyen VT, Mereb J (1996) Recurrent neural networks for phasor detection and adaptive identification in power system control and protection. IEEE Trans Instrum Meas 45(2):657–664CrossRef
61.
Zurück zum Zitat Alam M, Vidyaratne L, Iftekharuddin KM (2018) Novel deep generative simultaneous recurrent model for efficient representation learning. Neural Netw 107:12–22CrossRef Alam M, Vidyaratne L, Iftekharuddin KM (2018) Novel deep generative simultaneous recurrent model for efficient representation learning. Neural Netw 107:12–22CrossRef
62.
Zurück zum Zitat Ezzeldin R, Hatata A (2018) Application of NARX neural network model for discharge prediction through lateral orifices. Alex Eng J 57(4):2991–2998CrossRef Ezzeldin R, Hatata A (2018) Application of NARX neural network model for discharge prediction through lateral orifices. Alex Eng J 57(4):2991–2998CrossRef
63.
Zurück zum Zitat Yassin AIM, Khalid MFA, Herman SH, Ibrahim IP, Wahab NA, Awang Z (2017) Multi-layer perceptron (MLP)-based nonlinear auto-regressive with exogenous inputs (NARX) stock forecasting model. Int J Adv Sci Eng Inf Technol 7(3):1098–1103CrossRef Yassin AIM, Khalid MFA, Herman SH, Ibrahim IP, Wahab NA, Awang Z (2017) Multi-layer perceptron (MLP)-based nonlinear auto-regressive with exogenous inputs (NARX) stock forecasting model. Int J Adv Sci Eng Inf Technol 7(3):1098–1103CrossRef
64.
Zurück zum Zitat Cadenas E, Rivera W, Campos-Amezcua R, Heard C (2016) Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies 9(2):109CrossRef Cadenas E, Rivera W, Campos-Amezcua R, Heard C (2016) Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies 9(2):109CrossRef
65.
Zurück zum Zitat Cadenas E, Rivera W, Campos-Amezcua R, Cadenas R (2016) Wind speed forecasting using the NARX model, case: La Mata, Oaxaca México. Neural Comput Appl 27(8):2417–2428CrossRef Cadenas E, Rivera W, Campos-Amezcua R, Cadenas R (2016) Wind speed forecasting using the NARX model, case: La Mata, Oaxaca México. Neural Comput Appl 27(8):2417–2428CrossRef
66.
Zurück zum Zitat Solares JRA, Wei HL, Billings SA (2019) A novel logistic-NARX model as a classifier for dynamic binary classification. Neural Comput Appl 31(1):11–25CrossRef Solares JRA, Wei HL, Billings SA (2019) A novel logistic-NARX model as a classifier for dynamic binary classification. Neural Comput Appl 31(1):11–25CrossRef
67.
Zurück zum Zitat Dai Q, Song G (2016) A novel Supervised competitive learning algorithm. Neurocomputing 191:356–362CrossRef Dai Q, Song G (2016) A novel Supervised competitive learning algorithm. Neurocomputing 191:356–362CrossRef
68.
Zurück zum Zitat Kulkarni SR, Rajendran B (2018) Spiking neural networks for handwritten digit recognition—Supervised learning and network optimization. Neural Netw 103:118–127CrossRef Kulkarni SR, Rajendran B (2018) Spiking neural networks for handwritten digit recognition—Supervised learning and network optimization. Neural Netw 103:118–127CrossRef
69.
Zurück zum Zitat Bohte SM, Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1):17–37MATHCrossRef Bohte SM, Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1):17–37MATHCrossRef
70.
Zurück zum Zitat Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef
71.
Zurück zum Zitat Costa MA, Braga AP, de Menezes BR (2007) Improving generalization of MLPs with sliding mode control and the Levenberg–Marquardt algorithm. Neurocomputing 70(7):1342–1347CrossRef Costa MA, Braga AP, de Menezes BR (2007) Improving generalization of MLPs with sliding mode control and the Levenberg–Marquardt algorithm. Neurocomputing 70(7):1342–1347CrossRef
72.
Zurück zum Zitat Schiller H (2007) Model inversion by parameter fit using NN emulating the forward model—evaluation of indirect measurements. Neural Netw 20(4):479–483MATHCrossRef Schiller H (2007) Model inversion by parameter fit using NN emulating the forward model—evaluation of indirect measurements. Neural Netw 20(4):479–483MATHCrossRef
73.
Zurück zum Zitat Declercq F, De Keyser R (1996) Using Levenberg–Marquardt minimization in neural model based predictive control. IFAC Proc 29(7):289–293CrossRef Declercq F, De Keyser R (1996) Using Levenberg–Marquardt minimization in neural model based predictive control. IFAC Proc 29(7):289–293CrossRef
74.
Zurück zum Zitat Iqbal J, Iqbal A, Arif M (2015) Levenberg–Marquardt method for solving systems of absolute value equations. J Comput Appl Math 282:134–138MathSciNetMATHCrossRef Iqbal J, Iqbal A, Arif M (2015) Levenberg–Marquardt method for solving systems of absolute value equations. J Comput Appl Math 282:134–138MathSciNetMATHCrossRef
75.
76.
Zurück zum Zitat Baruch IS, Arellano-Quintana VM (2014) Identification and control of oscillatory dynamical systems using recurrent complex-valued neural networks. In: Proceedings of the 18th International Conference on Circuits, Systems, Communications and Computers, Santorini, Greece, pp 534–539 Baruch IS, Arellano-Quintana VM (2014) Identification and control of oscillatory dynamical systems using recurrent complex-valued neural networks. In: Proceedings of the 18th International Conference on Circuits, Systems, Communications and Computers, Santorini, Greece, pp 534–539
77.
Zurück zum Zitat Kişi Ö, Uncuoǧlu E (2005) Comparison of three backpropagation training algorithms for two case studies. Indian J Eng Mater Sci 12:434–442 Kişi Ö, Uncuoǧlu E (2005) Comparison of three backpropagation training algorithms for two case studies. Indian J Eng Mater Sci 12:434–442
78.
Zurück zum Zitat Baruch IS, Mariaca-Gaspar CR (2009) A Levenberg–Marquardt learning applied for recurrent neural identification and control of a wastewater treatment bioprocess. Int J Intell Syst 24(11):1094–1114MATHCrossRef Baruch IS, Mariaca-Gaspar CR (2009) A Levenberg–Marquardt learning applied for recurrent neural identification and control of a wastewater treatment bioprocess. Int J Intell Syst 24(11):1094–1114MATHCrossRef
79.
Zurück zum Zitat Rakhshkhorshid M, Teimouri Sendesi SA (2014) Bayesian regularization neural networks for prediction of austenite formation temperatures (Ac1 and Ac3). J Iron Steel Res Int 21(2):246–251CrossRef Rakhshkhorshid M, Teimouri Sendesi SA (2014) Bayesian regularization neural networks for prediction of austenite formation temperatures (Ac1 and Ac3). J Iron Steel Res Int 21(2):246–251CrossRef
80.
Zurück zum Zitat de Albuquerque Teixeira R, Braga AP, Takahashi RHC, Saldanha RR (2000) Improving generalization of MLPs with multi-objective optimization. Neurocomputing 35(1):189–194MATHCrossRef de Albuquerque Teixeira R, Braga AP, Takahashi RHC, Saldanha RR (2000) Improving generalization of MLPs with multi-objective optimization. Neurocomputing 35(1):189–194MATHCrossRef
81.
Zurück zum Zitat Park J-G, Jo S (2016) Approximate Bayesian MLP regularization for regression in the presence of noise. Neural Netw 83:75–85CrossRef Park J-G, Jo S (2016) Approximate Bayesian MLP regularization for regression in the presence of noise. Neural Netw 83:75–85CrossRef
82.
Zurück zum Zitat Schmidt A, Creason W, Law BE (2018) Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw 108:97–113CrossRef Schmidt A, Creason W, Law BE (2018) Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw 108:97–113CrossRef
83.
Zurück zum Zitat Xu Y, Zeng X, Han L, Yang J (2013) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113MATHCrossRef Xu Y, Zeng X, Han L, Yang J (2013) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113MATHCrossRef
84.
Zurück zum Zitat Memisevic R, Hinton G (2005) Improving dimensionality reduction with spectral gradient descent. Neural Netw 18(5):702–710CrossRef Memisevic R, Hinton G (2005) Improving dimensionality reduction with spectral gradient descent. Neural Netw 18(5):702–710CrossRef
85.
Zurück zum Zitat Zhang B, Liu Y, Cao J, Wu S, Wang J (2019) Fully complex conjugate gradient-based neural networks using Wirtinger calculus framework: deterministic convergence and its application. Neural Netw 115:50–64MATHCrossRef Zhang B, Liu Y, Cao J, Wu S, Wang J (2019) Fully complex conjugate gradient-based neural networks using Wirtinger calculus framework: deterministic convergence and its application. Neural Netw 115:50–64MATHCrossRef
86.
Zurück zum Zitat Park H, Amari S-I, Fukumizu K (2000) Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw 13(7):755–764CrossRef Park H, Amari S-I, Fukumizu K (2000) Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw 13(7):755–764CrossRef
87.
Zurück zum Zitat Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533CrossRef Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533CrossRef
88.
Zurück zum Zitat Pulipaka S, Kumar R (2016) Analysis of irradiance losses on a soiled photovoltaic panel using contours. Energy Convers Manag 115:327–336CrossRef Pulipaka S, Kumar R (2016) Analysis of irradiance losses on a soiled photovoltaic panel using contours. Energy Convers Manag 115:327–336CrossRef
89.
Zurück zum Zitat Al-Turjman F, Qadir Z, Abujubbeh M, Batunlu C (2020) Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Comput Electr Eng 86:106743CrossRef Al-Turjman F, Qadir Z, Abujubbeh M, Batunlu C (2020) Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Comput Electr Eng 86:106743CrossRef
90.
Zurück zum Zitat Ramos A, Chatzopoulou MA, Guarracino I, Freeman J, Markides CN (2017) Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Convers Manag 150:838–850CrossRef Ramos A, Chatzopoulou MA, Guarracino I, Freeman J, Markides CN (2017) Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Convers Manag 150:838–850CrossRef
91.
Zurück zum Zitat Ye Z, Kim MK (2018) Predicting electricity consumption in a building using an optimized back-propagation and Levenberg–Marquardt back-propagation neural network: case study of a shopping mall in china. Sustain Cities Soc 42:176–183CrossRef Ye Z, Kim MK (2018) Predicting electricity consumption in a building using an optimized back-propagation and Levenberg–Marquardt back-propagation neural network: case study of a shopping mall in china. Sustain Cities Soc 42:176–183CrossRef
Metadaten
Titel
Use of Neural Network Based Prediction Algorithms for Powering Up Smart Portable Accessories
verfasst von
Zakria Qadir
Enver Ever
Canras Batunlu
Publikationsdatum
07.01.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10397-3

Weitere Artikel der Ausgabe 1/2021

Neural Processing Letters 1/2021 Zur Ausgabe

Neuer Inhalt