Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

25.04.2018 | Ausgabe 1/2019

International Journal of Intelligent Transportation Systems Research 1/2019

Use of Particle Filtering to Establish a Time-Varying Car-Following Model

Zeitschrift:
International Journal of Intelligent Transportation Systems Research > Ausgabe 1/2019
Autoren:
Makoto Kasai, Jian Xing

Abstract

Methods for predicting the flow of vehicular traffic have been studied in order to anticipate short-term changes in service level. However, if the target route is an expressway with capacity bottlenecks (e.g., sag sections), it can be difficult to predict when a breakdown in the traffic flow will occur. There is a need to model the traffic dynamics from the free-flowing state to a congested state. Although previous studies have treated the parameters of traffic-flow models as being static, it is likely that they are actually time varying. This variation may be either random (i.e., white noise), influenced by longitudinal alignment, or both. To assess the critical traffic-flow state at a sag section, we use traffic-flow data collected from a driving simulator, these being more homogenous than actual flow data. Each participant repeated the course five times and from the second to fifth run followed a lead car corresponding to the same participant’s previous run. We estimate time-varying parameters to assess the influence of longitudinal alignment. To counteract operational randomness, we calculate the average parameters of the five repeated car-following runs for each participant. To minimize the computational cost, we use particle-filtering methods rather than Markov-chain Monte Carlo methods. Finally, we suggest future improvements to flow-breakdown modeling.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

International Journal of Intelligent Transportation Systems Research 1/2019 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise