Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2019

29.04.2019

Using an Artificial Neural Network for Nondestructive Evaluation of the Heat Treating Processes for D2 Tool Steels

verfasst von: S. Kahrobaee, S. Ghanei, M. Kashefi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In nondestructive evaluation (NDE) of heat-treated steels, different variables of the heat treating process have complex effects on outputs of NDE methods, and hence, the effect of one desired variable on NDE outputs should be evaluated to help interpreting the changes. In the present paper, the potential of the magnetic hysteresis method was evaluated for simultaneous detection of the austenitizing and tempering temperatures of AISI D2 samples parts subjected to different heat treatment conditions. To produce the microstructural changes, five groups of the samples were austenitized at 1025-1130 °C, quenched in oil and finally each group was tempered in the range 200-650 °C. SEM and x-ray diffractometry techniques were used to characterize different produced microstructures. For accurate and simultaneous prediction of tempering and austenitizing temperatures, an artificial neural network (ANN) was implemented for magnetic hysteresis outputs including magnetic saturation, coercivity and maximum differential permeability. The study revealed that the magnetic NDE system coupled to ANN has the ability to be adopted as an effective expert NDE tool to predict heat treatment effects on D2 tool steels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.A. Roberts, R. Kennedy, and G. Krauss, Tool Steels, 5th ed., ASM International, Materials Park, 1998 G.A. Roberts, R. Kennedy, and G. Krauss, Tool Steels, 5th ed., ASM International, Materials Park, 1998
2.
Zurück zum Zitat P.M. Uterweiser, Heat Theater’s Guide, Standard Practices and Procedures for Steel, American Society for Metals, Cleveland, 1989 P.M. Uterweiser, Heat Theater’s Guide, Standard Practices and Procedures for Steel, American Society for Metals, Cleveland, 1989
3.
Zurück zum Zitat S. Kahrobaee and M. Kashefi, Microstructural Characterization of Quenched AISI, D2 Tool Steel Using Magnetic/Electromagnetic Nondestructive Techniques, IEEE Trans. Magn., 2015, 51(9), p 1–7CrossRef S. Kahrobaee and M. Kashefi, Microstructural Characterization of Quenched AISI, D2 Tool Steel Using Magnetic/Electromagnetic Nondestructive Techniques, IEEE Trans. Magn., 2015, 51(9), p 1–7CrossRef
4.
Zurück zum Zitat Y. Hirotsu and S. Nagakura, Crystal Structure and Morphology of the Carbide Precipitated From Martensitic High Carbon Steel During the First Stage of Tempering, Acta Metal., 1972, 20(4), p 645–655CrossRef Y. Hirotsu and S. Nagakura, Crystal Structure and Morphology of the Carbide Precipitated From Martensitic High Carbon Steel During the First Stage of Tempering, Acta Metal., 1972, 20(4), p 645–655CrossRef
5.
Zurück zum Zitat V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metal. Mater. Trans. A, 2014, 45(5), p 2453–2465CrossRef V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metal. Mater. Trans. A, 2014, 45(5), p 2453–2465CrossRef
6.
Zurück zum Zitat A. Kokosza and J. Pacyna, Evaluation of Retained Austenite Stability in Heat Treated Cold Work Tool Steel, J. Mater. Process. Technol., 2005, 162–163, p 327–331CrossRef A. Kokosza and J. Pacyna, Evaluation of Retained Austenite Stability in Heat Treated Cold Work Tool Steel, J. Mater. Process. Technol., 2005, 162–163, p 327–331CrossRef
7.
Zurück zum Zitat P. Bała, J. Pacyna, and J. Krawczyk, The Influence of The Kinetics of Phase Transformations During Tempering on the Structure Development in a High Carbon Steel, Arch. Metall. Mater., 2007, 52(1), p 113–120 P. Bała, J. Pacyna, and J. Krawczyk, The Influence of The Kinetics of Phase Transformations During Tempering on the Structure Development in a High Carbon Steel, Arch. Metall. Mater., 2007, 52(1), p 113–120
8.
Zurück zum Zitat S. Kahrobaee and M. Kashefi, Electromagnetic Nondestructive Evaluation of Tempering Process in AISI, D2 Tool Steel, J. Magn. Magn. Mater., 2015, 382, p 359–365CrossRef S. Kahrobaee and M. Kashefi, Electromagnetic Nondestructive Evaluation of Tempering Process in AISI, D2 Tool Steel, J. Magn. Magn. Mater., 2015, 382, p 359–365CrossRef
9.
Zurück zum Zitat S. Ding, G.Y. Tian, G. Dobmann, and P. Wang, Analysis of Domain Wall Dynamics Based on Skewness of Magnetic Barkhausen Noise for Applied Stress Determination, J. Magn. Magn. Mater., 2017, 421, p 225–229CrossRef S. Ding, G.Y. Tian, G. Dobmann, and P. Wang, Analysis of Domain Wall Dynamics Based on Skewness of Magnetic Barkhausen Noise for Applied Stress Determination, J. Magn. Magn. Mater., 2017, 421, p 225–229CrossRef
10.
Zurück zum Zitat A. Freddy, F. Grijalba, and L.R. Padovese, Non-destructive Scanning for Applied Stress by the Continuous Magnetic Barkhausen Noise Method, J. Magn. Magn. Mater., 2018, 446, p 231–238CrossRef A. Freddy, F. Grijalba, and L.R. Padovese, Non-destructive Scanning for Applied Stress by the Continuous Magnetic Barkhausen Noise Method, J. Magn. Magn. Mater., 2018, 446, p 231–238CrossRef
11.
Zurück zum Zitat O. Kypris, I.C. Nlebedim, and D.C. Jiles, Measuring Stress Variation with Depth Using Barkhausen Signals, J. Magn. Magn. Mater., 2016, 407, p 377–395CrossRef O. Kypris, I.C. Nlebedim, and D.C. Jiles, Measuring Stress Variation with Depth Using Barkhausen Signals, J. Magn. Magn. Mater., 2016, 407, p 377–395CrossRef
12.
Zurück zum Zitat J. Pala and J. Bydzovsky, Barkhausen Noise as a Function of Grain Size in Non-oriented FeSi Steel, Measurement, 2013, 46, p 866–870CrossRef J. Pala and J. Bydzovsky, Barkhausen Noise as a Function of Grain Size in Non-oriented FeSi Steel, Measurement, 2013, 46, p 866–870CrossRef
13.
Zurück zum Zitat L. Batista, U. Rabe, I. Altpeter, S. Hirsekorn, and G. Dobmann, On the Mechanism of Nondestructive Evaluation of Cementite Content in Steels Using a Combination of Magnetic Barkhausen Noise and Magnetic Force Microscopy Techniques, J. Magn. Magn. Mater., 2014, 354, p 248–256CrossRef L. Batista, U. Rabe, I. Altpeter, S. Hirsekorn, and G. Dobmann, On the Mechanism of Nondestructive Evaluation of Cementite Content in Steels Using a Combination of Magnetic Barkhausen Noise and Magnetic Force Microscopy Techniques, J. Magn. Magn. Mater., 2014, 354, p 248–256CrossRef
14.
Zurück zum Zitat J.W. Wilson and G.Y. Tian, Pulsed Electromagnetic Methods for Defect Detection and Characterization, NDT E Int., 2007, 40, p 275–283CrossRef J.W. Wilson and G.Y. Tian, Pulsed Electromagnetic Methods for Defect Detection and Characterization, NDT E Int., 2007, 40, p 275–283CrossRef
15.
Zurück zum Zitat A. Martinez-de-Guerenu, K. Gurruchaga, and F. Arizti, Nondestructive Characterization of Recovery and Recrystallization in Cold Rolled Low Carbon Steel by Magnetic Hysteresis Loops, J. Magn. Magn. Mater., 2007, 316, p e842–e845CrossRef A. Martinez-de-Guerenu, K. Gurruchaga, and F. Arizti, Nondestructive Characterization of Recovery and Recrystallization in Cold Rolled Low Carbon Steel by Magnetic Hysteresis Loops, J. Magn. Magn. Mater., 2007, 316, p e842–e845CrossRef
16.
Zurück zum Zitat C.S. Angani, D.G. Park, C.G. Kim, P. Leela, P. Kollu, and Y.M. Cheong, The Pulsed Eddy Current Differential Probe to Detect a Thickness Variation in an Insulated Stainless Steel, J. Nondestruct. Eval., 2010, 29, p 248–252CrossRef C.S. Angani, D.G. Park, C.G. Kim, P. Leela, P. Kollu, and Y.M. Cheong, The Pulsed Eddy Current Differential Probe to Detect a Thickness Variation in an Insulated Stainless Steel, J. Nondestruct. Eval., 2010, 29, p 248–252CrossRef
17.
Zurück zum Zitat D. Park, C. Sekar Angani, B.P.C. Rao, G. Vértesy, D.-H. Lee, and K.-H. Kim, Detection of the Subsurface Cracks in a Stainless Steel Plate Using Pulsed Eddy Current, J. Nondestruct. Eval., 2013, 32, p 350–353CrossRef D. Park, C. Sekar Angani, B.P.C. Rao, G. Vértesy, D.-H. Lee, and K.-H. Kim, Detection of the Subsurface Cracks in a Stainless Steel Plate Using Pulsed Eddy Current, J. Nondestruct. Eval., 2013, 32, p 350–353CrossRef
18.
Zurück zum Zitat M. Sheikh Amiri and M. Kashefi, Investigation of Variables Affecting Impedance Plane in Eddy Current Testing of Carburized Steels, J. Mater. Eng. Perform., 2011, 20, p 476–480CrossRef M. Sheikh Amiri and M. Kashefi, Investigation of Variables Affecting Impedance Plane in Eddy Current Testing of Carburized Steels, J. Mater. Eng. Perform., 2011, 20, p 476–480CrossRef
19.
Zurück zum Zitat X.J. Hao, W. Yin, M. Strangwood, A.J. Peyton, P.F. Morris, and C.L. Davis, Off-Line Measurement of Decarburization of Steels Using a Multifrequency Electromagnetic Sensor, Scripta Mater., 2008, 58, p 1033–1036CrossRef X.J. Hao, W. Yin, M. Strangwood, A.J. Peyton, P.F. Morris, and C.L. Davis, Off-Line Measurement of Decarburization of Steels Using a Multifrequency Electromagnetic Sensor, Scripta Mater., 2008, 58, p 1033–1036CrossRef
20.
Zurück zum Zitat M. Sheikh Amiri and M. Kashefi, Application of Eddy Current Nondestructive Method for Determination of Surface Carbon Content in Carburized Steels, NDT E Int., 2009, 42(7), p 618–621CrossRef M. Sheikh Amiri and M. Kashefi, Application of Eddy Current Nondestructive Method for Determination of Surface Carbon Content in Carburized Steels, NDT E Int., 2009, 42(7), p 618–621CrossRef
21.
Zurück zum Zitat K. Davut and C. Hakan Gür, Monitoring the Microstructural Changes During Tempering of Quenched SAE 5140 steel by Magnetic Barkhausen Noise, J. Nondestruct. Eval., 2007, 26(2), p 107–113CrossRef K. Davut and C. Hakan Gür, Monitoring the Microstructural Changes During Tempering of Quenched SAE 5140 steel by Magnetic Barkhausen Noise, J. Nondestruct. Eval., 2007, 26(2), p 107–113CrossRef
22.
Zurück zum Zitat S. Kahrobaee and M. Kashefi, Assessment of Retained Austenite in AISI, D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters, J. Mater. Eng. Perform., 2015, 24(3), p 1192–1198CrossRef S. Kahrobaee and M. Kashefi, Assessment of Retained Austenite in AISI, D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters, J. Mater. Eng. Perform., 2015, 24(3), p 1192–1198CrossRef
23.
Zurück zum Zitat M. Kashefi, A. Rafsanjani, S. Kahrobaee, and M. Alaee, Magnetic Nondestructive Technology for Detection of Tempered Martensite Embrittlement, J. Magn. Magn. Mater., 2012, 324(23), p 4090–4093CrossRef M. Kashefi, A. Rafsanjani, S. Kahrobaee, and M. Alaee, Magnetic Nondestructive Technology for Detection of Tempered Martensite Embrittlement, J. Magn. Magn. Mater., 2012, 324(23), p 4090–4093CrossRef
24.
Zurück zum Zitat K.V. Rajkumar, S. Vaidyanathan, A. Kumar, T. Jayakumar, B. Raj, and K.K. Ray, Characterization of Aging-Induced Microstructural Changes in M250 Maraging Steel Using Magnetic Parameters, J. Magn. Magn. Mater., 2007, 312(2), p 359–365CrossRef K.V. Rajkumar, S. Vaidyanathan, A. Kumar, T. Jayakumar, B. Raj, and K.K. Ray, Characterization of Aging-Induced Microstructural Changes in M250 Maraging Steel Using Magnetic Parameters, J. Magn. Magn. Mater., 2007, 312(2), p 359–365CrossRef
25.
Zurück zum Zitat K. Rajkumar, B. Rao, B. Sasi, A. Kumar, T. Jayakumar, B. Raj, and K. Ray, Characterization of Aging Behaviour in M250 Grade Maraging Steel Using Eddy Current Non-destructive Methodology, Mater. Sci. Eng. A, 2007, 464(1–2), p 233–240CrossRef K. Rajkumar, B. Rao, B. Sasi, A. Kumar, T. Jayakumar, B. Raj, and K. Ray, Characterization of Aging Behaviour in M250 Grade Maraging Steel Using Eddy Current Non-destructive Methodology, Mater. Sci. Eng. A, 2007, 464(1–2), p 233–240CrossRef
26.
Zurück zum Zitat S. Ghanei, M. Kashefi, and M. Mazinani, Eddy Current Nondestructive Evaluation of Dual Phase Steel, Mater. Des., 2013, 50, p 491–496CrossRef S. Ghanei, M. Kashefi, and M. Mazinani, Eddy Current Nondestructive Evaluation of Dual Phase Steel, Mater. Des., 2013, 50, p 491–496CrossRef
27.
Zurück zum Zitat S. Ghanei, M. Kashefi, and M. Mazinani, Comparative Study of Eddy Current and Barkhausen Noise Nondestructive Testing Methods in Microstructural Examination of Ferrite–Martensite Dual-Phase Steel, J. Magn. Magn. Mater., 2014, 356, p 103–110CrossRef S. Ghanei, M. Kashefi, and M. Mazinani, Comparative Study of Eddy Current and Barkhausen Noise Nondestructive Testing Methods in Microstructural Examination of Ferrite–Martensite Dual-Phase Steel, J. Magn. Magn. Mater., 2014, 356, p 103–110CrossRef
28.
Zurück zum Zitat S. Ghanei, A. Saheb Alam, M. Kashefi, and M. Mazinani, Nondestructive Characterization of Microstructure and Mechanical Properties of Intercritically Annealed Dual-Phase Steel by Magnetic Barkhausen Noise Technique, Mater. Sci. Eng. A, 2014, 607, p 253–260CrossRef S. Ghanei, A. Saheb Alam, M. Kashefi, and M. Mazinani, Nondestructive Characterization of Microstructure and Mechanical Properties of Intercritically Annealed Dual-Phase Steel by Magnetic Barkhausen Noise Technique, Mater. Sci. Eng. A, 2014, 607, p 253–260CrossRef
29.
Zurück zum Zitat M. Zare and J. Vahdati Khaki, Prediction of Mechanical Properties of a Warm Compacted Molybdenum Prealloy Using Artificial Neural Network and Adaptive Neuro-Fuzzy Models, Mater. Des., 2012, 38, p 26–31CrossRef M. Zare and J. Vahdati Khaki, Prediction of Mechanical Properties of a Warm Compacted Molybdenum Prealloy Using Artificial Neural Network and Adaptive Neuro-Fuzzy Models, Mater. Des., 2012, 38, p 26–31CrossRef
30.
Zurück zum Zitat S.J. Farley, J.F. Durodola, N.A. Fellows, and L.H. Hernández-Gómez, High Resolution Non-destructive Evaluation of Defects Using Artificial Neural Networks and Wavelets, NDT E Int., 2012, 52, p 69–75CrossRef S.J. Farley, J.F. Durodola, N.A. Fellows, and L.H. Hernández-Gómez, High Resolution Non-destructive Evaluation of Defects Using Artificial Neural Networks and Wavelets, NDT E Int., 2012, 52, p 69–75CrossRef
31.
Zurück zum Zitat P.B. García-Allende, J. Mirapeix, O.M. Conde, A. Cobo, and J.M. López-Higuera, Spectral Processing Technique Based on Feature Selection and Artificial Neural Networks for Arc-Welding Quality Monitoring, NDT E Int., 2009, 42(1), p 56–63CrossRef P.B. García-Allende, J. Mirapeix, O.M. Conde, A. Cobo, and J.M. López-Higuera, Spectral Processing Technique Based on Feature Selection and Artificial Neural Networks for Arc-Welding Quality Monitoring, NDT E Int., 2009, 42(1), p 56–63CrossRef
32.
Zurück zum Zitat G.-Z. Quan, T. Wang, Y.-I. Li, Z.-Y. Zhan, and Y.-F. Xia, Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(2), p 553–564CrossRef G.-Z. Quan, T. Wang, Y.-I. Li, Z.-Y. Zhan, and Y.-F. Xia, Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(2), p 553–564CrossRef
33.
Zurück zum Zitat A. Das, J. Maiti, and R.N. Banerjee, Process Control Strategies for a Steel Making Furnace Using ANN with Bayesian Regularization and ANFIS, Expert Syst. Appl., 2010, 37(2), p 1075–1085CrossRef A. Das, J. Maiti, and R.N. Banerjee, Process Control Strategies for a Steel Making Furnace Using ANN with Bayesian Regularization and ANFIS, Expert Syst. Appl., 2010, 37(2), p 1075–1085CrossRef
34.
Zurück zum Zitat C. Suresh Kumar, V. Arumugam, R. Sengottuvelusamy, S. Srinivasan, and H.N. Dhakal, Failure Strength Prediction of Glass/Epoxy Composite Laminates from Acoustic Emission Parameters Using Artificial Neural Network, Appl. Acoust., 2017, 115, p 32–41CrossRef C. Suresh Kumar, V. Arumugam, R. Sengottuvelusamy, S. Srinivasan, and H.N. Dhakal, Failure Strength Prediction of Glass/Epoxy Composite Laminates from Acoustic Emission Parameters Using Artificial Neural Network, Appl. Acoust., 2017, 115, p 32–41CrossRef
35.
Zurück zum Zitat Ł. Sadowski, J. Hoła, and S. Czarnecki, Non-destructive Neural Identification of the Bond Between Concrete Layers in Existing Elements, Constr. Build. Mater., 2016, 127, p 49–58CrossRef Ł. Sadowski, J. Hoła, and S. Czarnecki, Non-destructive Neural Identification of the Bond Between Concrete Layers in Existing Elements, Constr. Build. Mater., 2016, 127, p 49–58CrossRef
36.
Zurück zum Zitat N.I.E. Farhana, M.S. Abdul Majid, M.P. Paulraj, E. Ahmadhilmi, M.N. Fakhzan, and A.G. Gibson, A Novel Vibration Based Non-destructive Testing for Predicting Glass Fibre/Matrix Volume Fraction in Composites Using a Neural Network Model, Compos. Struct., 2016, 144, p 96–107CrossRef N.I.E. Farhana, M.S. Abdul Majid, M.P. Paulraj, E. Ahmadhilmi, M.N. Fakhzan, and A.G. Gibson, A Novel Vibration Based Non-destructive Testing for Predicting Glass Fibre/Matrix Volume Fraction in Composites Using a Neural Network Model, Compos. Struct., 2016, 144, p 96–107CrossRef
37.
Zurück zum Zitat C.M. Salgado, L.E.B. Brandão, C.C. Conti, and W.L. Salgado, Density Prediction for Petroleum and Derivatives by Gamma-Ray Attenuation and Artificial Neural Networks, Appl. Radiat. Isot., 2016, 116, p 143–149CrossRef C.M. Salgado, L.E.B. Brandão, C.C. Conti, and W.L. Salgado, Density Prediction for Petroleum and Derivatives by Gamma-Ray Attenuation and Artificial Neural Networks, Appl. Radiat. Isot., 2016, 116, p 143–149CrossRef
38.
Zurück zum Zitat F.C. Cruz, E.F. Simas Filho, M.C.S. Albuquerque, I.C. Silva, C.T.T. Farias, and L.L. Gouvêa, Efficient Feature Selection for Neural Network Based Detection of Flaws in Steel Welded Joints Using Ultrasound Testing, Ultrasonics, 2017, 73, p 1–8CrossRef F.C. Cruz, E.F. Simas Filho, M.C.S. Albuquerque, I.C. Silva, C.T.T. Farias, and L.L. Gouvêa, Efficient Feature Selection for Neural Network Based Detection of Flaws in Steel Welded Joints Using Ultrasound Testing, Ultrasonics, 2017, 73, p 1–8CrossRef
39.
Zurück zum Zitat H. Wang, S.-J. Hsieh, B. Peng, and X. Zhou, Non-metallic Coating Thickness Prediction Using Artificial Neural Network and Support Vector Machine with Time Resolved Thermography, Infrared Phys. Technol., 2016, 77, p 316–324CrossRef H. Wang, S.-J. Hsieh, B. Peng, and X. Zhou, Non-metallic Coating Thickness Prediction Using Artificial Neural Network and Support Vector Machine with Time Resolved Thermography, Infrared Phys. Technol., 2016, 77, p 316–324CrossRef
40.
Zurück zum Zitat X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, Detection of Micro Gap Weld Joint by Using Magneto-Optical Imaging and Kalman Filtering Compensated With RBF Neural Network, Mech. Syst. Signal. Process., 2017, 84(Part A), p 570–583CrossRef X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, Detection of Micro Gap Weld Joint by Using Magneto-Optical Imaging and Kalman Filtering Compensated With RBF Neural Network, Mech. Syst. Signal. Process., 2017, 84(Part A), p 570–583CrossRef
41.
Zurück zum Zitat S. Ghanei, H. Vafaeenezhad, M. Kashefi, A.R. Eivani, and M. Mazinani, Design of an Expert System Based on Neuro-Fuzzy Inference Analyzer for On-Line Microstructural Characterization Using Magnetic NDT Method, J. Magn. Magn. Mater., 2015, 379, p 131–136CrossRef S. Ghanei, H. Vafaeenezhad, M. Kashefi, A.R. Eivani, and M. Mazinani, Design of an Expert System Based on Neuro-Fuzzy Inference Analyzer for On-Line Microstructural Characterization Using Magnetic NDT Method, J. Magn. Magn. Mater., 2015, 379, p 131–136CrossRef
42.
Zurück zum Zitat O. Stupakov, Investigation of Applicability of Extrapolation Method for Sample Field Determination in Single-Yoke Measuring Setup, J. Magn. Magn. Mater., 2006, 307(2), p 279–287CrossRef O. Stupakov, Investigation of Applicability of Extrapolation Method for Sample Field Determination in Single-Yoke Measuring Setup, J. Magn. Magn. Mater., 2006, 307(2), p 279–287CrossRef
43.
Zurück zum Zitat H. Vafaeenezhad, S. Ghanei, S.H. Seyedein, H. Beygi, and M. Mazinani, Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS, J. Mater. Eng. Perform., 2014, 23(11), p 3975–3983CrossRef H. Vafaeenezhad, S. Ghanei, S.H. Seyedein, H. Beygi, and M. Mazinani, Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS, J. Mater. Eng. Perform., 2014, 23(11), p 3975–3983CrossRef
44.
Zurück zum Zitat G. Kranthi and A. Satapathy, Evaluation and Prediction of Wear Response of Pine Wood Dust Filled Epoxy Composites Using Neural Computation, Comput. Mater. Sci., 2010, 49(3), p 609–614CrossRef G. Kranthi and A. Satapathy, Evaluation and Prediction of Wear Response of Pine Wood Dust Filled Epoxy Composites Using Neural Computation, Comput. Mater. Sci., 2010, 49(3), p 609–614CrossRef
45.
Zurück zum Zitat M. Kashefi and S. Kahrobaee, Determination of Martensite Start Temperature Using an Electromagnetic Nondestructive Technology, J. Alloys Compd., 2017, 720, p 478–482CrossRef M. Kashefi and S. Kahrobaee, Determination of Martensite Start Temperature Using an Electromagnetic Nondestructive Technology, J. Alloys Compd., 2017, 720, p 478–482CrossRef
46.
Zurück zum Zitat ASTM E975-00, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, Vol. 03.01, West Conshohocken, PA, 2004. ASTM E975-00, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, Vol. 03.01, West Conshohocken, PA, 2004.
47.
Zurück zum Zitat S.S.M. Tavares, H.F.G. Abreu, J.M. Neto, M.R. da Silva, and I. Popa, A Magnetic Study of the Maraging 350 Steel, J. Magn. Magn. Mater., 2004, 272, p 785–787CrossRef S.S.M. Tavares, H.F.G. Abreu, J.M. Neto, M.R. da Silva, and I. Popa, A Magnetic Study of the Maraging 350 Steel, J. Magn. Magn. Mater., 2004, 272, p 785–787CrossRef
48.
Zurück zum Zitat K. Davut and C.H. Gür, Monitoring the Microstructural Evolution in Spheroidized Steels by Magnetic Barkhausen Noise Measurements, J. Nondestruct. Eval., 2010, 29(4), p 241–247CrossRef K. Davut and C.H. Gür, Monitoring the Microstructural Evolution in Spheroidized Steels by Magnetic Barkhausen Noise Measurements, J. Nondestruct. Eval., 2010, 29(4), p 241–247CrossRef
49.
Zurück zum Zitat H. Vafaeenezhad, S. Asadolahpour, N. Nayebpashaee, S. Seyedein, and M. Aboutalebi, Intelligent Use of Data to Optimize Compressive Strength of Cellulose-Derived Composites, Appl. Soft Comput., 2016, 40, p 594–602CrossRef H. Vafaeenezhad, S. Asadolahpour, N. Nayebpashaee, S. Seyedein, and M. Aboutalebi, Intelligent Use of Data to Optimize Compressive Strength of Cellulose-Derived Composites, Appl. Soft Comput., 2016, 40, p 594–602CrossRef
50.
Zurück zum Zitat M. Dehnavi, H. Vafaeenezhad, M. Khakzadi, N. Nayebpashaee, and A. Eivani, Modelling and Prediction Impression Creep Behaviour of Al–Cu Cast Alloy, Int. J. Cast Met. Res., 2017, 30(2), p 70–80CrossRef M. Dehnavi, H. Vafaeenezhad, M. Khakzadi, N. Nayebpashaee, and A. Eivani, Modelling and Prediction Impression Creep Behaviour of Al–Cu Cast Alloy, Int. J. Cast Met. Res., 2017, 30(2), p 70–80CrossRef
51.
Zurück zum Zitat S.A. Sani, G. Ebrahimi, H. Vafaeenezhad, and A. Kiani-Rashid, Modeling of Hot Deformation Behavior and Prediction of Flow Stress in a Magnesium Alloy Using Constitutive Equation and Artificial Neural Network (ANN) Model, J. Magnes. Alloys, 2018, 6(2), p 134–144CrossRef S.A. Sani, G. Ebrahimi, H. Vafaeenezhad, and A. Kiani-Rashid, Modeling of Hot Deformation Behavior and Prediction of Flow Stress in a Magnesium Alloy Using Constitutive Equation and Artificial Neural Network (ANN) Model, J. Magnes. Alloys, 2018, 6(2), p 134–144CrossRef
52.
Zurück zum Zitat H. Vafaeenezhad, S. Seyedein, M. Aboutalebi, and A. Eivani, Application of Constitutive Description and Integrated ANFIS—ICA Analysis to Predict Hot Deformation Behavior of Sn–5Sb Lead-Free Solder Alloy, J. Alloys Compd., 2017, 697, p 287–299CrossRef H. Vafaeenezhad, S. Seyedein, M. Aboutalebi, and A. Eivani, Application of Constitutive Description and Integrated ANFIS—ICA Analysis to Predict Hot Deformation Behavior of Sn–5Sb Lead-Free Solder Alloy, J. Alloys Compd., 2017, 697, p 287–299CrossRef
53.
Zurück zum Zitat L. Shi, S. Lin, Y. Lu, L. Ye, and Y. Zhang, Artificial Neural Network Based Mechanical and Electrical Property Prediction of Engineered Cementitious Composites, Constr. Build. Mater., 2018, 174, p 667–674CrossRef L. Shi, S. Lin, Y. Lu, L. Ye, and Y. Zhang, Artificial Neural Network Based Mechanical and Electrical Property Prediction of Engineered Cementitious Composites, Constr. Build. Mater., 2018, 174, p 667–674CrossRef
54.
Zurück zum Zitat H. Vafaeenezhad, S. Seyedein, M. Aboutalebi, and A. Eivani, Incorporating the Johnson–Cook Constitutive Model and a Soft Computational Approach for Predicting the High-Temperature Flow Behavior of Sn–5Sb Solder Alloy: A Comparative Study for Processing Map Development, J. Electron. Mater., 2017, 46(1), p 467–477CrossRef H. Vafaeenezhad, S. Seyedein, M. Aboutalebi, and A. Eivani, Incorporating the Johnson–Cook Constitutive Model and a Soft Computational Approach for Predicting the High-Temperature Flow Behavior of Sn–5Sb Solder Alloy: A Comparative Study for Processing Map Development, J. Electron. Mater., 2017, 46(1), p 467–477CrossRef
55.
Zurück zum Zitat P. Verpoort, P. MacDonald, and G.J. Conduit, Materials Data Validation and Imputation with an Artificial Neural Network, Comput. Mater. Sci., 2018, 147, p 176–185CrossRef P. Verpoort, P. MacDonald, and G.J. Conduit, Materials Data Validation and Imputation with an Artificial Neural Network, Comput. Mater. Sci., 2018, 147, p 176–185CrossRef
56.
Zurück zum Zitat Y. Xu and R. Jin, Measurement of Reinforcement Corrosion in Concrete Adopting Ultrasonic Tests and Artificial Neural Network, Constr. Build. Mater., 2018, 177, p 125–133CrossRef Y. Xu and R. Jin, Measurement of Reinforcement Corrosion in Concrete Adopting Ultrasonic Tests and Artificial Neural Network, Constr. Build. Mater., 2018, 177, p 125–133CrossRef
57.
Zurück zum Zitat T.-H. Hejazi and S. Kahrobaee, A Predictive Model for Characterizing Hardness of D2 Tool Steel by Eddy Current Method: A Statistical Optimization Approach, Res. Nondestruct. Eval., 2018, 29, p 237–254CrossRef T.-H. Hejazi and S. Kahrobaee, A Predictive Model for Characterizing Hardness of D2 Tool Steel by Eddy Current Method: A Statistical Optimization Approach, Res. Nondestruct. Eval., 2018, 29, p 237–254CrossRef
Metadaten
Titel
Using an Artificial Neural Network for Nondestructive Evaluation of the Heat Treating Processes for D2 Tool Steels
verfasst von
S. Kahrobaee
S. Ghanei
M. Kashefi
Publikationsdatum
29.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04057-4

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Engineering and Performance 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.