Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.12.2019 | Ausgabe 1/2020

Water Resources Management 1/2020

Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data

Zeitschrift:
Water Resources Management > Ausgabe 1/2020
Autor:
Saeid Mehdizadeh
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Precipitation is one of the most important components of the hydrologic cycle as it is required for multi-objective applications including flood estimation, drought monitoring, watersheds management, hydrology, agriculture, etc. Therefore, its estimation and modeling via a suitable method is a challenging task for hydrologists. The present study seeks to model monthly precipitation at two stations located in Iran. Two artificial intelligence (AI)-based models consisting of multivariate adaptive regression splines (MARS) and k-nearest neighbors (KNN) were used as the modeling techniques. In doing so, nine single-input scenarios under limited climatic data are implemented using minimum, maximum, and mean air temperatures, dew point temperature, station pressure, vapor pressure, relative humidity, wind speed, and antecedent precipitation data. The attained results illustrate that the performance of single MARS and KNN is relatively poor when modeling the monthly precipitation. Additionally, this study develops hybrid models to enhance the precipitation modeling through combining the MARS and KNN models with three diverse types of the time series (TS) models, namely autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA). The most important justification for integrating the models applied is that the AI and TS-based models are respectively capable of modeling the non-linear and linear terms of the hydrological variables such as precipitation. It is therefore necessary to be considered both of the aforementioned terms in the modeling procedure. A performance comparison of the single and hybrid models denotes the higher accuracy of hybrid models than the single ones. However, the hybrid models generated by combining the KNN and the TS models used are the best-performing models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Water Resources Management 1/2020 Zur Ausgabe