Skip to main content

2022 | OriginalPaper | Buchkapitel

Using Causal Discovery to Design Agent-Based Models

verfasst von : Stef Janssen, Alexei Sharpanskykh, S. Sahand Mohammadi Ziabari

Erschienen in: Multi-Agent-Based Simulation XXII

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Designing agent-based models is a difficult task. Some guidelines exist to aid modelers in designing their models, but they generally do not include specific details on how the behavior of agents can be defined. This paper therefore proposes the AbCDe methodology, which uses causal discovery algorithms to specify agent behavior. The methodology combines important expert insights with causal graphs generated by causal discovery algorithms based on real-world data. This causal graph represents the causal structure among agent-related variables, which is then translated to behavioral properties in the agent-based model. To demonstrate the AbCDe methodology, it is applied to a case study in the airport security domain. In this case study, we explore a new concept of operations, using a service lane, to improve the efficiency of the security checkpoint. Results show that the models generated with the AbCDe methodology have a closer resemblance with the validation data than a model defined by experts alone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Janssen, S., Sharpanskykh, A., Curran, R.: Agent-based modelling and analysis of security and efficiency in airport terminals. Transp. Res. Part C Emerg. Technol. 100, 142–160 (2019)CrossRef Janssen, S., Sharpanskykh, A., Curran, R.: Agent-based modelling and analysis of security and efficiency in airport terminals. Transp. Res. Part C Emerg. Technol. 100, 142–160 (2019)CrossRef
2.
Zurück zum Zitat Klugl, F., Oechslein, C., Puppe, F., Dornhaus, A., et al.: Multi-agent modelling in comparison to standard modelling. Simul. News Europe 40, 3–9 (2004) Klugl, F., Oechslein, C., Puppe, F., Dornhaus, A., et al.: Multi-agent modelling in comparison to standard modelling. Simul. News Europe 40, 3–9 (2004)
3.
Zurück zum Zitat Klugl, F., Bazzan, A.L.: Agent-based modeling and simulation. AI Mag. 33(3), 29 (2012) Klugl, F., Bazzan, A.L.: Agent-based modeling and simulation. AI Mag. 33(3), 29 (2012)
4.
Zurück zum Zitat Grimm, V., et al.: A standard protocol for describing individual based and agent-based models. Ecol. Model. 198(1–2), 115–126 (2006)CrossRef Grimm, V., et al.: A standard protocol for describing individual based and agent-based models. Ecol. Model. 198(1–2), 115–126 (2006)CrossRef
5.
Zurück zum Zitat Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.: The odd protocol: a review and first update. Ecol. Model. 221(23), 2760–2768 (2010)CrossRef Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.: The odd protocol: a review and first update. Ecol. Model. 221(23), 2760–2768 (2010)CrossRef
6.
Zurück zum Zitat Muller, B., et al.: Describing human decisions in agent-base models- odd + D, an extension of the odd protocol. Environ. Model. Softw. 48, 37–48 (2013)CrossRef Muller, B., et al.: Describing human decisions in agent-base models- odd + D, an extension of the odd protocol. Environ. Model. Softw. 48, 37–48 (2013)CrossRef
7.
Zurück zum Zitat Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Babram, M.A.: Odd+2D: an odd based protocol for mapping data to empirical ABMs. J. Artif. Soc. Soc. Simul. 21(2), 9 (2018)CrossRef Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Babram, M.A.: Odd+2D: an odd based protocol for mapping data to empirical ABMs. J. Artif. Soc. Soc. Simul. 21(2), 9 (2018)CrossRef
8.
Zurück zum Zitat Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016) Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016)
9.
10.
Zurück zum Zitat Kavak, H., Padilla, J.J., Lynch, C.J., Diallo, S.Y.: Big data, agents, and machine learning: towards a data-driven agent-based modeling approach. In: Proceedings of the Annual Simulation Symposium, p. 12. Society for Computer Simulation International (2018) Kavak, H., Padilla, J.J., Lynch, C.J., Diallo, S.Y.: Big data, agents, and machine learning: towards a data-driven agent-based modeling approach. In: Proceedings of the Annual Simulation Symposium, p. 12. Society for Computer Simulation International (2018)
11.
Zurück zum Zitat Peters, J., Janzing, D., Scholkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. MIT press, Cambridge (2017)MATH Peters, J., Janzing, D., Scholkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. MIT press, Cambridge (2017)MATH
12.
Zurück zum Zitat Shrier, I., Platt, R.W.: Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 8(1), 70 (2008)CrossRef Shrier, I., Platt, R.W.: Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 8(1), 70 (2008)CrossRef
13.
Zurück zum Zitat Magliacane, S., Claassen, T., Mooij, J.M.: Ancestral causal inference. In: Advances in Neural Information Processing Systems, pp. 4466–4474 (2016) Magliacane, S., Claassen, T., Mooij, J.M.: Ancestral causal inference. In: Advances in Neural Information Processing Systems, pp. 4466–4474 (2016)
14.
Zurück zum Zitat Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef
15.
Zurück zum Zitat Casini, L., Manzo, G.: Agent-based models and causality: a methodological appraisal, Linkoping University, Department of Management and Engineering, The Institute for Analytical Sociology, The IAS Working Paper Series 2016:7 Casini, L., Manzo, G.: Agent-based models and causality: a methodological appraisal, Linkoping University, Department of Management and Engineering, The Institute for Analytical Sociology, The IAS Working Paper Series 2016:7
17.
Zurück zum Zitat Guerini, M., Moneta, A.: A method for agent-based models validation. J. Econ. Dyn. Control 82, 125–141 (2017)MathSciNetCrossRef Guerini, M., Moneta, A.: A method for agent-based models validation. J. Econ. Dyn. Control 82, 125–141 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Janssen, S., Sharpanskykh, A., Curran, R., Langendoen, K.: Using causal discovery to analyze emergence in agent-based models. Simul. Model. Pract. Theory 96, 101940 (2019)CrossRef Janssen, S., Sharpanskykh, A., Curran, R., Langendoen, K.: Using causal discovery to analyze emergence in agent-based models. Simul. Model. Pract. Theory 96, 101940 (2019)CrossRef
19.
Zurück zum Zitat Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, New Delhi (2016)MATH Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, New Delhi (2016)MATH
20.
Zurück zum Zitat Hauser, A., Buhlmann, P.: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13, 2409–2464 (2012)MathSciNetMATH Hauser, A., Buhlmann, P.: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13, 2409–2464 (2012)MathSciNetMATH
21.
Zurück zum Zitat Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)CrossRef Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)CrossRef
22.
Zurück zum Zitat Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity. In: International Conference on Complex Systems, Boston, MA, vol. 21, pp. 16–21 (2004) Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity. In: International Conference on Complex Systems, Boston, MA, vol. 21, pp. 16–21 (2004)
23.
Zurück zum Zitat Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRef Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRef
24.
Zurück zum Zitat North, M.J., et al.: Complex adaptive systems modeling with repast symphony. Complex Adapt. Syst. Model. 1, 1–26 (2013)CrossRef North, M.J., et al.: Complex adaptive systems modeling with repast symphony. Complex Adapt. Syst. Model. 1, 1–26 (2013)CrossRef
25.
Zurück zum Zitat Janssen, S., Sharpanskykh, A., Curran, R., Langendoen, K.: AATOM: an agent-based airport terminal operations model simulator. In: Proceedings of the 51st Computer Simulation Conference, SummerSim 2019, Berlin, Germany, 22–14 July 2019 Janssen, S., Sharpanskykh, A., Curran, R., Langendoen, K.: AATOM: an agent-based airport terminal operations model simulator. In: Proceedings of the 51st Computer Simulation Conference, SummerSim 2019, Berlin, Germany, 22–14 July 2019
26.
Zurück zum Zitat Janssen, S., van der Sommen, R., Dilweg, A., Sharpanskykh, A.: Data-driven analysis of airport security checkpoint operations. Aerospace 7(6), 69 (2020)CrossRef Janssen, S., van der Sommen, R., Dilweg, A., Sharpanskykh, A.: Data-driven analysis of airport security checkpoint operations. Aerospace 7(6), 69 (2020)CrossRef
27.
Zurück zum Zitat Daniel, W.W.: Kolmogorov-smirnov one-sample test. Appl. Nonparametr. Stat. 2 (1990) Daniel, W.W.: Kolmogorov-smirnov one-sample test. Appl. Nonparametr. Stat. 2 (1990)
28.
Zurück zum Zitat Nelder, D.J.A., Wedderburn, R.W.: Generalized linear models. J. Royal Stat. Soc. Ser. A (General) 135(3), 370–384 (1972)CrossRef Nelder, D.J.A., Wedderburn, R.W.: Generalized linear models. J. Royal Stat. Soc. Ser. A (General) 135(3), 370–384 (1972)CrossRef
Metadaten
Titel
Using Causal Discovery to Design Agent-Based Models
verfasst von
Stef Janssen
Alexei Sharpanskykh
S. Sahand Mohammadi Ziabari
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-94548-0_2

Premium Partner