Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.08.2018 | Original Paper | Ausgabe 1/2019

Journal of Computer Virology and Hacking Techniques 1/2019

Using convolutional neural networks for classification of malware represented as images

Zeitschrift:
Journal of Computer Virology and Hacking Techniques > Ausgabe 1/2019
Autoren:
Daniel Gibert, Carles Mateu, Jordi Planes, Ramon Vicens

Abstract

The number of malicious files detected every year are counted by millions. One of the main reasons for these high volumes of different files is the fact that, in order to evade detection, malware authors add mutation. This means that malicious files belonging to the same family, with the same malicious behavior, are constantly modified or obfuscated using several techniques, in such a way that they look like different files. In order to be effective in analyzing and classifying such large amounts of files, we need to be able to categorize them into groups and identify their respective families on the basis of their behavior. In this paper, malicious software is visualized as gray scale images since its ability to capture minor changes while retaining the global structure helps to detect variations. Motivated by the visual similarity between malware samples of the same family, we propose a file agnostic deep learning approach for malware categorization to efficiently group malicious software into families based on a set of discriminant patterns extracted from their visualization as images. The suitability of our approach is evaluated against two benchmarks: the MalImg dataset and the Microsoft Malware Classification Challenge dataset. Experimental comparison demonstrates its superior performance with respect to state-of-the-art techniques.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Journal of Computer Virology and Hacking Techniques 1/2019 Zur Ausgabe

Premium Partner

    Bildnachweise