Skip to main content
Erschienen in: Computational Mechanics 2/2019

04.07.2018 | Original Paper

Using finite element codes as a numerical platform to run molecular dynamics simulations

verfasst von: Jens Wackerfuß, Florian Niederhöfer

Erschienen in: Computational Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematically rigorous methodology for embedding the governing equations of molecular dynamics in the formalism of the finite element method is presented. Only one generalized finite element type is needed to cover all different types of existing interatomic potentials. The finite element type is simply specified by two parameters characterizing the type of the interatomic potential to be considered. Built on this formulation a partitioned Runge–Kutta method—summarizing a wide range of explicit and implicit, single- and multi-stage, lower and higher order time integration schemes—is embedded in a unified manner. The required finite element residual vector and the related Jacobian matrix are stated explicitly. The related FE-mesh coincides with the neighborhood lists used in standard molecular dynamics enabling the use of common tools. The range, versatility and performance of the proposed finite element formulation have been demonstrated by means of several numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this paper the terms ‘nearest neighbors’ and ‘neighborhood list’ are referred to chemically bonded atoms only; i.e. arbitrary non-bonded atoms are excluded. In the literature, these terms commonly refer to both bonded and non-bonded interactions.
 
Literatur
1.
Zurück zum Zitat Iijimi S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijimi S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
2.
Zurück zum Zitat Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, OxfordMATH Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, OxfordMATH
3.
Zurück zum Zitat Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) The atomic-scale finite element method. Comput Methods Appl Mech Eng 193:1849–1864CrossRefMATH Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) The atomic-scale finite element method. Comput Methods Appl Mech Eng 193:1849–1864CrossRefMATH
4.
5.
Zurück zum Zitat Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef
6.
Zurück zum Zitat Wang Y, Sun C, Sun X, Hinkley J, Odegard GM, Gates TS (2003) 2-D nano-scale finite element analysis of a polymer field. Compos Sci Technol 63:1581–1590CrossRef Wang Y, Sun C, Sun X, Hinkley J, Odegard GM, Gates TS (2003) 2-D nano-scale finite element analysis of a polymer field. Compos Sci Technol 63:1581–1590CrossRef
7.
Zurück zum Zitat Leung AYT, Guo X, He XQ, Kitipornchai S (2005) A continuum model for zigzag single-walled carbon nanotubes. Appl Phys Lett 86:083110-1–083110-3CrossRef Leung AYT, Guo X, He XQ, Kitipornchai S (2005) A continuum model for zigzag single-walled carbon nanotubes. Appl Phys Lett 86:083110-1–083110-3CrossRef
8.
Zurück zum Zitat Sun C, Zhao W (2005) Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. Mater Sci Eng A 390:366–371CrossRef Sun C, Zhao W (2005) Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. Mater Sci Eng A 390:366–371CrossRef
9.
Zurück zum Zitat Nasdala L, Kempe A, Rolfes R (2010) The molecular dynamic finite element method (MDFEM). Comput Mater Contin 19:57–104 Nasdala L, Kempe A, Rolfes R (2010) The molecular dynamic finite element method (MDFEM). Comput Mater Contin 19:57–104
10.
Zurück zum Zitat Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef
11.
Zurück zum Zitat Wang Y, Zhang C, Zhou E, Sun C, Hinkley J, Gates TS, Su J (2006) Atomistic finite elements applicable to solid polymers. Comput Mater Sci 36:292–302CrossRef Wang Y, Zhang C, Zhou E, Sun C, Hinkley J, Gates TS, Su J (2006) Atomistic finite elements applicable to solid polymers. Comput Mater Sci 36:292–302CrossRef
12.
Zurück zum Zitat Wilmes AAR, Pinho ST (2014) A coupled mechanical-charge/dipole molecular dynamics finite element method, with multi-scale applications to the design of graphene nano-devices. Int J Numer Methods Eng 100:243–276MathSciNetCrossRefMATH Wilmes AAR, Pinho ST (2014) A coupled mechanical-charge/dipole molecular dynamics finite element method, with multi-scale applications to the design of graphene nano-devices. Int J Numer Methods Eng 100:243–276MathSciNetCrossRefMATH
13.
Zurück zum Zitat Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430CrossRef Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430CrossRef
14.
Zurück zum Zitat Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I, nonstiff problems. Springer series in computational mathematics, vol 8. Springer, BerlinMATH Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I, nonstiff problems. Springer series in computational mathematics, vol 8. Springer, BerlinMATH
15.
Zurück zum Zitat Hairer E, Wanner G (1996) Solving ordinary differential equations II, stiff and differential-alegebraic problems. Springer series in computational mathematics, vol 14. Springer, BerlinCrossRefMATH Hairer E, Wanner G (1996) Solving ordinary differential equations II, stiff and differential-alegebraic problems. Springer series in computational mathematics, vol 14. Springer, BerlinCrossRefMATH
16.
Zurück zum Zitat Hairer E, Lubich C, Wanner G (2004) Geometric numerical integration geometric numerical integration, structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics, vol 31. Springer, BerlinMATH Hairer E, Lubich C, Wanner G (2004) Geometric numerical integration geometric numerical integration, structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics, vol 31. Springer, BerlinMATH
17.
Zurück zum Zitat Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, LondonCrossRefMATH Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, LondonCrossRefMATH
18.
Zurück zum Zitat Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRef Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRef
19.
Zurück zum Zitat Verlet L (1967) Computer, “experiments” on classical fluids. Phys Rev 159:98–103CrossRef Verlet L (1967) Computer, “experiments” on classical fluids. Phys Rev 159:98–103CrossRef
20.
Zurück zum Zitat Ruth RD (1983) A canonical integration technique. IEEE Trans Nucl Sci NS–30:2669–2671CrossRef Ruth RD (1983) A canonical integration technique. IEEE Trans Nucl Sci NS–30:2669–2671CrossRef
21.
Zurück zum Zitat Niederhöfer F, Wackerfuß J (2012) High-order time integration methods in molecular dynamics. Proc Appl Math Mech 12:47–48CrossRef Niederhöfer F, Wackerfuß J (2012) High-order time integration methods in molecular dynamics. Proc Appl Math Mech 12:47–48CrossRef
22.
Zurück zum Zitat Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C\(_{60}\): Buckminsterfullerene. Nature 318:162–163CrossRef Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C\(_{60}\): Buckminsterfullerene. Nature 318:162–163CrossRef
23.
Zurück zum Zitat Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471CrossRef Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471CrossRef
24.
Zurück zum Zitat Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter 14:783–802 Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter 14:783–802
Metadaten
Titel
Using finite element codes as a numerical platform to run molecular dynamics simulations
verfasst von
Jens Wackerfuß
Florian Niederhöfer
Publikationsdatum
04.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1594-5

Weitere Artikel der Ausgabe 2/2019

Computational Mechanics 2/2019 Zur Ausgabe

Neuer Inhalt