Zum Inhalt
Erschienen in:

10.02.2018

Using machine learning to predict student difficulties from learning session data

verfasst von: Mushtaq Hussain, Wenhao Zhu, Wu Zhang, Syed Muhammad Raza Abidi, Sadaqat Ali

Erschienen in: Artificial Intelligence Review | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The student’s performance prediction is an important research topic because it can help teachers prevent students from dropping out before final exams and identify students that need additional assistance. The objective of this study is to predict the difficulties that students will encounter in a subsequent digital design course session. We analyzed the data logged by a technology-enhanced learning (TEL) system called digital electronics education and design suite (DEEDS) using machine learning algorithms. The machine learning algorithms included an artificial neural networks (ANNs), support vector machines (SVMs), logistic regression, Naïve bayes classifiers and decision trees. The DEEDS system allows students to solve digital design exercises with different levels of difficulty while logging input data. The input variables of the current study were average time, total number of activities, average idle time, average number of keystrokes and total related activity for each exercise during individual sessions in the digital design course; the output variables were the student(s) grades for each session. We then trained machine learning algorithms on the data from the previous session and tested the algorithms on the data from the upcoming session. We performed k-fold cross-validation and computed the receiver operating characteristic and root mean square error metrics to evaluate the models’ performances. The results show that ANNs and SVMs achieve higher accuracy than do other algorithms. ANNs and SVMs can easily be integrated into the TEL system; thus, we would expect instructors to report improved student’s performance during the subsequent session.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Using machine learning to predict student difficulties from learning session data
verfasst von
Mushtaq Hussain
Wenhao Zhu
Wu Zhang
Syed Muhammad Raza Abidi
Sadaqat Ali
Publikationsdatum
10.02.2018
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence Review / Ausgabe 1/2019
Print ISSN: 0269-2821
Elektronische ISSN: 1573-7462
DOI
https://doi.org/10.1007/s10462-018-9620-8