Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.08.2020 | Original Article | Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021

Using multiple classifier behavior to develop a dynamic outlier ensemble

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2021
Autoren:
Ping Yuan, Biao Wang, Zhizhong Mao
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Outlier ensembles that use more base detectors recently become an attractive approach to solving problems of single detectors. However, existing outlier ensembles often assume that base detectors make independent errors, which is difficult to satisfy in practical applications. To this end, this paper proposes a dynamic outlier ensemble to loose this error independence assumption. In our method, it is desired that the most competent base detector(s) can be singled out by the dynamic selection mechanism for each test pattern. The usage of the concept of multiple classifier behavior (MCB) has two purposes. One is to generate artificial outlier examples used for competence estimates. This strategy is different from other methods since we do not make any assumption regarding the data distribution. On the other hand, MCB is used to refine validation sets initialized by the K-nearest neighbors (KNN) rule. It is desired that objects in the refined validation sets are more representative than those found by KNN. With the refined validation sets, competences of all base detectors will be estimated by a probabilistic method, before which we have transformed outputs of base detectors into a probabilistic form. Finally, a switching mechanism that determines whether one detector should be nominated to make the decision or a fusion method should be applied instead is proposed in order to achieve a robust detection result. We carry out experiments on 20 benchmark data sets to verify the effectiveness of our detection method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021 Zur Ausgabe