Skip to main content
Erschienen in: Neural Computing and Applications 8/2017

19.01.2016 | Original Article

Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process

verfasst von: Saeed Shirazian, Masoud Alibabaei

Erschienen in: Neural Computing and Applications | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, membrane distillation (MD) systems have found considerable attention in separation processes, especially for desalination applications. Among different MD systems, air gap membrane distillation (AGMD) system is of the most appropriate choices for water desalination. In this system, the stagnant air gap between the membrane and condensation surface causes an increase in the thermal energy efficiency of the process. To understand the relationships between input and outputs parameters and variables, a mathematical technique was developed using Volterra functional series theory. The cold feed inlet temperature (T 1), hot feed inlet temperature (T 3), and feed-in flow rate (F) were considered as the input variables of the AGMD system, and distillate flux (J), cold feed outlet temperature (T 2), and gained output ratio (GOR) were set as the output variables. The relationships between these variables were examined, and their effect on the performance of the AGMD system was evaluated in terms of GOR and J by using the presented mathematical techniques of multivariable function approximation. A particle swarm optimization-based controlled neural network was also performed to explore the effect of input operational parameters on GOR, J, and T2 in each model to determine the existence domain of model coefficients. The experimental data have been collected from the literature and analyzed to check the consistency and accuracy of proposed model. It was found that the presented models can reproduce the available experimental data with desirable accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
6.
Zurück zum Zitat Xiao T, Wang P, Yang X, Cai X, Lu J (2015) Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications. J Membr Sci 489:160–174. doi:10.1016/j.memsci.2015.03.081 CrossRef Xiao T, Wang P, Yang X, Cai X, Lu J (2015) Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications. J Membr Sci 489:160–174. doi:10.​1016/​j.​memsci.​2015.​03.​081 CrossRef
9.
Zurück zum Zitat Efome JE, Baghbanzadeh M, Rana D, Matsuura T, Lan CQ (2015) Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373:47–57. doi:10.1016/j.desal.2015.07.002 CrossRef Efome JE, Baghbanzadeh M, Rana D, Matsuura T, Lan CQ (2015) Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373:47–57. doi:10.​1016/​j.​desal.​2015.​07.​002 CrossRef
10.
Zurück zum Zitat Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD (2015) Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination 374:1–9. doi:10.1016/j.desal.2015.07.009 CrossRef Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD (2015) Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination 374:1–9. doi:10.​1016/​j.​desal.​2015.​07.​009 CrossRef
13.
14.
16.
Zurück zum Zitat Asgarpour Khansary M, Hallaji Sani A (2014) Using genetic algorithm (GA) and particle swarm optimization (PSO) methods for determination of interaction parameters in multicomponent systems of liquid–liquid equilibria. Fluid Phase Equilib 365:141–145. doi:10.1016/j.fluid.2014.01.016 CrossRef Asgarpour Khansary M, Hallaji Sani A (2014) Using genetic algorithm (GA) and particle swarm optimization (PSO) methods for determination of interaction parameters in multicomponent systems of liquid–liquid equilibria. Fluid Phase Equilib 365:141–145. doi:10.​1016/​j.​fluid.​2014.​01.​016 CrossRef
17.
18.
22.
Metadaten
Titel
Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process
verfasst von
Saeed Shirazian
Masoud Alibabaei
Publikationsdatum
19.01.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2184-0

Weitere Artikel der Ausgabe 8/2017

Neural Computing and Applications 8/2017 Zur Ausgabe