Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.02.2012 | Original Article | Ausgabe 3/2012

Environmental Earth Sciences 3/2012

Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas

Zeitschrift:
Environmental Earth Sciences > Ausgabe 3/2012
Autoren:
Khamis Al-Mahallawi, Jacky Mania, Azzedine Hani, Isam Shahrour

Abstract

As a neural network provides a non-linear function mapping of a set of input variables into the corresponding network output, without the requirement of having to specify the actual mathematical form of the relation between the input and output variables, it has the versatility for modeling a wide range of complex non-linear phenomena. In this study, groundwater contamination by nitrate, the ANNs are applied as a new type of model to estimate the nitrate contamination of the Gaza Strip aquifer. A set of six explanatory variables for 139 sampled wells was used and that have a significant influence were identified by using ANN model. The Multilayer Perceptrons (MLP), Radial Basis Function (RBF), Generalized Regression Neural Network (GRNN), and Linear Networks were used. The best network found to simulate Nitrate was MLP with six input nodes and four hidden nodes. The input variables are: nitrogen load, housing density in 500-m radius area surrounding wells, well depth, screen length, well discharge, and infiltration rate. The best network found had good performance (regression ratio 0.2158, correlation 0.9773, and error 8.4322). Bivariate statistical test also were used and resulting in considerable unexplained variation in nitrate concentration. Based on ANN model, groundwater contamination by nitrate depends not on any single factor but on the combination of them.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2012

Environmental Earth Sciences 3/2012 Zur Ausgabe