Skip to main content
Erschienen in: Wireless Networks 5/2019

05.02.2018

Utility aware network selection in small cell

verfasst von: Meenakshi Munjal, Niraj Pratap Singh

Erschienen in: Wireless Networks | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In fifth generation heterogeneous network, small cell is developed to compensate the growing demand for mobile data services. Due to the smaller size of cell, users have a short duration of connection, however, the user may also have the need of handoff frequently. At the time of handoff, different networks are available with different data rate and different other parameters. So, there is the need of frequent selection for the optimal network. In this paper, a utility-aware optimization algorithm has been proposed for network selection in a heterogeneous environment of Wi-Fi, WiMAX, WLAN, LTE, UMTS, and GPRS network. The weight factor is proposed for modified Jaya algorithm which is calculated by the analytical hierarchical process, standard deviation, and entropy method. Different applications are considered such as video, voice, web browsing and email transfer in which available bandwidth, packet jitter, packet loss, cost per byte are taken as dominant attributes, respectively. According to the dominant factor, different networks are selected for different applications because the requirement of all applications cannot be fulfilled by one network. Finally, the proposed algorithm is compared with multi-attribute decision making algorithms and game theory and accuracy of the proposed algorithm is calculated. The accuracy of proposed algorithm is higher as compared to the other algorithms and at the same time, this algorithm requires less computation which can further reduce the handoff latency and failure probability. Hence, the performance of handoff can be improved by using modified Jaya algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Shuminoski, T., & Janevski, T. (2016). 5G mobile terminals with advanced QoS-based user-centric aggregation (AQUA) for heterogeneous wireless and mobile networks. Wireless Networks, 22(5), 1553–1570.CrossRef Shuminoski, T., & Janevski, T. (2016). 5G mobile terminals with advanced QoS-based user-centric aggregation (AQUA) for heterogeneous wireless and mobile networks. Wireless Networks, 22(5), 1553–1570.CrossRef
3.
Zurück zum Zitat Chinnadurai, S., et al. (2017). User clustering and robust beamforming design in multicell MIMO-NOMA system for 5G communications. AEU-International Journal of Electronics and Communications, 78, 181–191.CrossRef Chinnadurai, S., et al. (2017). User clustering and robust beamforming design in multicell MIMO-NOMA system for 5G communications. AEU-International Journal of Electronics and Communications, 78, 181–191.CrossRef
4.
Zurück zum Zitat Zhang, X., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.MathSciNetCrossRef Zhang, X., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.MathSciNetCrossRef
5.
Zurück zum Zitat Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef
6.
Zurück zum Zitat Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. M. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRef Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. M. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRef
7.
Zurück zum Zitat Zhang, H., Jiang, C., Mao, X., & Chen, H. H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.CrossRef Zhang, H., Jiang, C., Mao, X., & Chen, H. H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.CrossRef
8.
Zurück zum Zitat Zhang, H., Wang, B., Long, K., Cheng, J., & Leung, V. C. M. (2017). Energy-efficient resource allocation in heterogeneous small cell networks with wifi spectrum sharing. In Proceedings of IEEE Globecom. Zhang, H., Wang, B., Long, K., Cheng, J., & Leung, V. C. M. (2017). Energy-efficient resource allocation in heterogeneous small cell networks with wifi spectrum sharing. In Proceedings of IEEE Globecom.
9.
Zurück zum Zitat Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 6778(c), 1–12. Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 6778(c), 1–12.
10.
Zurück zum Zitat Hu, S., Wang, X., & Shakir, M. Z. (2015). A MIH and SDN-based framework for network selection in 5G HetNet: Backhaul requirement perspectives. In IEEE international conference on communication workshop ICCW 2015 (pp. 37–43). Hu, S., Wang, X., & Shakir, M. Z. (2015). A MIH and SDN-based framework for network selection in 5G HetNet: Backhaul requirement perspectives. In IEEE international conference on communication workshop ICCW 2015 (pp. 37–43).
11.
Zurück zum Zitat Wu, Y., Hu, F., Zhu, Y., Kumar, S., & Member, S. (2017). Optimal spectrum handoff control for CRN based on hybrid priority queuing and multi-teacher apprentice learning. IEEE Transactions on Vehicular Technology, 66(3), 2630–2642.CrossRef Wu, Y., Hu, F., Zhu, Y., Kumar, S., & Member, S. (2017). Optimal spectrum handoff control for CRN based on hybrid priority queuing and multi-teacher apprentice learning. IEEE Transactions on Vehicular Technology, 66(3), 2630–2642.CrossRef
12.
Zurück zum Zitat Charilas, D. E., & Panagopoulous, A. D. (2010). Multiaccess radio network enviroments. IEEE Vehicular Technology Magazine, 5(4), 40–49.CrossRef Charilas, D. E., & Panagopoulous, A. D. (2010). Multiaccess radio network enviroments. IEEE Vehicular Technology Magazine, 5(4), 40–49.CrossRef
13.
Zurück zum Zitat Chonggang, W., Sohraby, K., Jana, R., Lusheng, J., & Daneshmand, M. (2009). Network selection in cognitive radio systems. In Global telecommunications conference, GLOBECOM 2009. IEEE (pp. 1–6). Chonggang, W., Sohraby, K., Jana, R., Lusheng, J., & Daneshmand, M. (2009). Network selection in cognitive radio systems. In Global telecommunications conference, GLOBECOM 2009. IEEE (pp. 1–6).
14.
Zurück zum Zitat Sheikholeslami, F., Nasiri-kenari, M., & Ashtiani, F. (2015). Optimal probabilistic initial and target channel selection for spectrum handoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 14(1), 570–584.CrossRef Sheikholeslami, F., Nasiri-kenari, M., & Ashtiani, F. (2015). Optimal probabilistic initial and target channel selection for spectrum handoff in cognitive radio networks. IEEE Transactions on Wireless Communications, 14(1), 570–584.CrossRef
15.
Zurück zum Zitat Kumar, A., Mallik, R. K., & Schober, R. (2014). A probabilistic approach to modeling users’ network selection in the presence of heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 63(7), 3331–3341.CrossRef Kumar, A., Mallik, R. K., & Schober, R. (2014). A probabilistic approach to modeling users’ network selection in the presence of heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 63(7), 3331–3341.CrossRef
16.
Zurück zum Zitat El Helou, M., Ibrahim, M., Lahoud, S., Khawam, K., Mezher, D., & Cousin, B. (2015). A network-assisted approach for rat selection in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(6), 1055–1067.CrossRef El Helou, M., Ibrahim, M., Lahoud, S., Khawam, K., Mezher, D., & Cousin, B. (2015). A network-assisted approach for rat selection in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(6), 1055–1067.CrossRef
17.
Zurück zum Zitat He, H., Li, X., Feng, Z., Hao, J., Wang, X., & Zhang, H. (2017). An adaptive handover trigger strategy for 5G C/U plane split heterogeneous network. In 2017 IEEE 14th international conference on mobile ad hoc and sensor systems (pp. 476–480). He, H., Li, X., Feng, Z., Hao, J., Wang, X., & Zhang, H. (2017). An adaptive handover trigger strategy for 5G C/U plane split heterogeneous network. In 2017 IEEE 14th international conference on mobile ad hoc and sensor systems (pp. 476–480).
18.
Zurück zum Zitat Kumar, K., Prakash, A., & Tripathi, R. (2017). Spectrum handoff scheme with multiple attributes decision making for optimal network selection in cognitive radio networks. Digital Communications and Networks, 3(3), 164–175.CrossRef Kumar, K., Prakash, A., & Tripathi, R. (2017). Spectrum handoff scheme with multiple attributes decision making for optimal network selection in cognitive radio networks. Digital Communications and Networks, 3(3), 164–175.CrossRef
19.
Zurück zum Zitat Verma, R., & Singh, N. P. (2013). GRA based network selection in heterogeneous wireless networks. Wireless Personal Communications, 72(2), 1437–1452.CrossRef Verma, R., & Singh, N. P. (2013). GRA based network selection in heterogeneous wireless networks. Wireless Personal Communications, 72(2), 1437–1452.CrossRef
20.
Zurück zum Zitat Martinez-Morales, J. D., Pineda-Rico, U., & Stevens-Navarro, E. (2010). Performance comparison between MADM algorithms for vertical handoff in 4G networks. In IEEE computing science and automatic control (CCE), 2010 7th international conference on electrical engineering (pp. 309–314). Martinez-Morales, J. D., Pineda-Rico, U., & Stevens-Navarro, E. (2010). Performance comparison between MADM algorithms for vertical handoff in 4G networks. In IEEE computing science and automatic control (CCE), 2010 7th international conference on electrical engineering (pp. 309–314).
21.
Zurück zum Zitat Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. M. (2017). Editorial: Game theory for 5G wireless networks. Mobile Networks and Applications, 22(3), 526–528.CrossRef Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. M. (2017). Editorial: Game theory for 5G wireless networks. Mobile Networks and Applications, 22(3), 526–528.CrossRef
22.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys & Tutorials, 14(4), 1212–1231.CrossRef Trestian, R., Ormond, O., & Muntean, G. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys & Tutorials, 14(4), 1212–1231.CrossRef
23.
Zurück zum Zitat Wang, B., Wu, Y., & Liu, K. J. R. (2010). Game theory for cognitive radio networks: An overview. Computer Networks, 54(14), 2537–2561.MATHCrossRef Wang, B., Wu, Y., & Liu, K. J. R. (2010). Game theory for cognitive radio networks: An overview. Computer Networks, 54(14), 2537–2561.MATHCrossRef
24.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G.-M. (2011). Reputation-based network selection mechanism using game theory. Physical Communication, 4(3), 156–171.CrossRef Trestian, R., Ormond, O., & Muntean, G.-M. (2011). Reputation-based network selection mechanism using game theory. Physical Communication, 4(3), 156–171.CrossRef
25.
Zurück zum Zitat Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach. IEEE Transactions on Vehicular Technology, 58(4), 2008–2017.CrossRef Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach. IEEE Transactions on Vehicular Technology, 58(4), 2008–2017.CrossRef
26.
Zurück zum Zitat Liu, B., Tian, H., Wang, B., & Fan, B. (2014). AHP and game theory based approach for network selection in heterogeneous wireless networks. In Consumer communications and networking conference (pp. 973–978). Liu, B., Tian, H., Wang, B., & Fan, B. (2014). AHP and game theory based approach for network selection in heterogeneous wireless networks. In Consumer communications and networking conference (pp. 973–978).
27.
Zurück zum Zitat Vassaki, S., Panagopoulos, A. D., & Constantinou, P. (2009). Bandwidth allocation in wireless access networks: Bankruptcy game vs cooperative game. In International conference on ultra modern telecommunications & workshops (pp. 1–4). Vassaki, S., Panagopoulos, A. D., & Constantinou, P. (2009). Bandwidth allocation in wireless access networks: Bankruptcy game vs cooperative game. In International conference on ultra modern telecommunications & workshops (pp. 1–4).
28.
Zurück zum Zitat Xu, K., Wang, K.-C., Amin, R., Martin, J., & Izard, R. (2015). A fast cloud-based network selection scheme using coalition formation games in vehicular networks. IEEE Transactions on Vehicular Technology, 64(11), 5327–5339.CrossRef Xu, K., Wang, K.-C., Amin, R., Martin, J., & Izard, R. (2015). A fast cloud-based network selection scheme using coalition formation games in vehicular networks. IEEE Transactions on Vehicular Technology, 64(11), 5327–5339.CrossRef
29.
Zurück zum Zitat Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In IEEE international conference on communications (pp. 4357–4362). Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In IEEE international conference on communications (pp. 4357–4362).
30.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G. M. (2014). Enhanced power-friendly access network selection strategy for multimedia delivery over heterogeneous wireless networks. IEEE Transactions on Broadcasting, 60(1), 85–101.CrossRef Trestian, R., Ormond, O., & Muntean, G. M. (2014). Enhanced power-friendly access network selection strategy for multimedia delivery over heterogeneous wireless networks. IEEE Transactions on Broadcasting, 60(1), 85–101.CrossRef
31.
Zurück zum Zitat Nguyen-Vuong, Q.-T., Agoulmine, N., Cherkaoui, E. H., & Toni, L. (2013). Multicriteria optimization of access selection to improve the quality of experience in heterogeneous wireless access networks. IEEE Transactions on Vehicular Technology, 62(4), 1785–1800.CrossRef Nguyen-Vuong, Q.-T., Agoulmine, N., Cherkaoui, E. H., & Toni, L. (2013). Multicriteria optimization of access selection to improve the quality of experience in heterogeneous wireless access networks. IEEE Transactions on Vehicular Technology, 62(4), 1785–1800.CrossRef
32.
Zurück zum Zitat Nguyen-Vuong, Q.-T., Ghamri-Doudane, Y., & Agoulmine, N. (2008). On utility models for access network selection in wireless heterogeneous networks. In Network operations and management symposium (pp. 144–151). Nguyen-Vuong, Q.-T., Ghamri-Doudane, Y., & Agoulmine, N. (2008). On utility models for access network selection in wireless heterogeneous networks. In Network operations and management symposium (pp. 144–151).
33.
Zurück zum Zitat Monteiro, V. F., Sousa, D. A., Maciel, T. F., Lima, F. R. M., Rodrigues, E. B., & Cavalcanti, F. R. P. (2015). Radio resource allocation framework for quality of experience optimization in wireless networks. IEEE Network, 29(6), 33–39.CrossRef Monteiro, V. F., Sousa, D. A., Maciel, T. F., Lima, F. R. M., Rodrigues, E. B., & Cavalcanti, F. R. P. (2015). Radio resource allocation framework for quality of experience optimization in wireless networks. IEEE Network, 29(6), 33–39.CrossRef
34.
Zurück zum Zitat Alkhawlani, M., & Ayesh, A. (2008). Access network selection based on fuzzy logic and genetic algorithms. Advances in Artificial Intelligence, 2008, 1–12.CrossRef Alkhawlani, M., & Ayesh, A. (2008). Access network selection based on fuzzy logic and genetic algorithms. Advances in Artificial Intelligence, 2008, 1–12.CrossRef
35.
Zurück zum Zitat Beheshti, Z., Mariyam, S., Shamsuddin, H., & Hasan, S. (2013). MPSO: Median-oriented particle swarm optimization. Applied Mathematics and Computation, 219(11), 5817–5836.MathSciNetMATHCrossRef Beheshti, Z., Mariyam, S., Shamsuddin, H., & Hasan, S. (2013). MPSO: Median-oriented particle swarm optimization. Applied Mathematics and Computation, 219(11), 5817–5836.MathSciNetMATHCrossRef
36.
Zurück zum Zitat Hardiansyah, H. (2013). A modified particle swarm optimization technique for economic load dispatch with valve-point effect. International Journal of Intelligent Systems and Applications, 5(7), 32–41.CrossRef Hardiansyah, H. (2013). A modified particle swarm optimization technique for economic load dispatch with valve-point effect. International Journal of Intelligent Systems and Applications, 5(7), 32–41.CrossRef
37.
Zurück zum Zitat Yue, Y., Li, J., Fan, H., & Qin, Q. (2016). Optimization-based artificial bee colony algorithm for data collection in large-scale mobile wireless sensor networks. Journal of Sensors, 1, 2016. Yue, Y., Li, J., Fan, H., & Qin, Q. (2016). Optimization-based artificial bee colony algorithm for data collection in large-scale mobile wireless sensor networks. Journal of Sensors, 1, 2016.
38.
Zurück zum Zitat Rao, R. V., & Patel, V. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3), 1147–1162.MathSciNetMATHCrossRef Rao, R. V., & Patel, V. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3), 1147–1162.MathSciNetMATHCrossRef
39.
Zurück zum Zitat Venkata, R. (2016). Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems”. International Journal of Industrial Engineering Computations, 7, 19–34.CrossRef Venkata, R. (2016). Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems”. International Journal of Industrial Engineering Computations, 7, 19–34.CrossRef
40.
Zurück zum Zitat Chang, C.-J., Tsai, T.-L., & Chen, Y.-H. (2009). Utility and game-theory based network selection scheme in heterogeneous wireless networks. In IEEE wireless communications and networking conference (pp. 1–5). Chang, C.-J., Tsai, T.-L., & Chen, Y.-H. (2009). Utility and game-theory based network selection scheme in heterogeneous wireless networks. In IEEE wireless communications and networking conference (pp. 1–5).
41.
Zurück zum Zitat Bacci, G., Lasaulce, S., Saad, W., & Sanguinetti, L. (2016). Game theory for networks: A tutorial on game-theoretic tools for emerging signal processing applications. IEEE Signal Processing Magazine, 33(1), 94–119.CrossRef Bacci, G., Lasaulce, S., Saad, W., & Sanguinetti, L. (2016). Game theory for networks: A tutorial on game-theoretic tools for emerging signal processing applications. IEEE Signal Processing Magazine, 33(1), 94–119.CrossRef
42.
Zurück zum Zitat Saaty, T. L. (2008). The analytic hierarchy and analytic network measurement processes: Applications to decisions under risk. European Journal of Pure and Applied Mathematics, 1(1), 122–196.MathSciNetMATH Saaty, T. L. (2008). The analytic hierarchy and analytic network measurement processes: Applications to decisions under risk. European Journal of Pure and Applied Mathematics, 1(1), 122–196.MathSciNetMATH
43.
Zurück zum Zitat Shuo, Z., & Qi, Z. H. U. (2014). Heterogeneous wireless network selection algorithm based on group decision. The Journal of China Universities of Posts and Telecommunications, 21(3), 1–9.CrossRef Shuo, Z., & Qi, Z. H. U. (2014). Heterogeneous wireless network selection algorithm based on group decision. The Journal of China Universities of Posts and Telecommunications, 21(3), 1–9.CrossRef
44.
Zurück zum Zitat Delgado, A., & Romero, I. (2016). Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environmental Modelling and Software, 77, 108–121.CrossRef Delgado, A., & Romero, I. (2016). Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environmental Modelling and Software, 77, 108–121.CrossRef
45.
Zurück zum Zitat Rao, R. V., & Rai, D. P. (2017). Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 29(5), 1–19.CrossRef Rao, R. V., & Rai, D. P. (2017). Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 29(5), 1–19.CrossRef
46.
Zurück zum Zitat Rao, R. V., More, K. C., Taler, J., & Ocłoń, P. (2016). Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Applied Thermal Engineering, 103, 572–582.CrossRef Rao, R. V., More, K. C., Taler, J., & Ocłoń, P. (2016). Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Applied Thermal Engineering, 103, 572–582.CrossRef
47.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G. (2013). Energy–quality–cost tradeoff in a multimedia-based heterogeneous wireless network environment. IEEE Transactions on Broadcasting, 59(2), 340–357.CrossRef Trestian, R., Ormond, O., & Muntean, G. (2013). Energy–quality–cost tradeoff in a multimedia-based heterogeneous wireless network environment. IEEE Transactions on Broadcasting, 59(2), 340–357.CrossRef
48.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G. (2016). Performance evaluation of MADM-based methods for network selection in a multimedia wireless environment. Wireless Networks, 21(5), 1745–1763.CrossRef Trestian, R., Ormond, O., & Muntean, G. (2016). Performance evaluation of MADM-based methods for network selection in a multimedia wireless environment. Wireless Networks, 21(5), 1745–1763.CrossRef
49.
Zurück zum Zitat Meenakshi, M., & Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. In IEEE international conference on computational techniques in information and communication technologies (ICCTICT) (pp. 612–617). Meenakshi, M., & Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. In IEEE international conference on computational techniques in information and communication technologies (ICCTICT) (pp. 612–617).
50.
Zurück zum Zitat Munjal, M., & Singh, N. P. (2016). Improved network selection for multimedia applications. Transactions on Emerging Telecommunications Technologies, 28, 1–16. Munjal, M., & Singh, N. P. (2016). Improved network selection for multimedia applications. Transactions on Emerging Telecommunications Technologies, 28, 1–16.
51.
Zurück zum Zitat Zheng, S. H. I., & Qi, Z. H. U. (2012). Network selection based on multiple attribute decision making and group decision making for heterogeneous wireless networks. The Journal of China Universities of Posts and Telecommunications, 19(5), 92–98.CrossRef Zheng, S. H. I., & Qi, Z. H. U. (2012). Network selection based on multiple attribute decision making and group decision making for heterogeneous wireless networks. The Journal of China Universities of Posts and Telecommunications, 19(5), 92–98.CrossRef
52.
Zurück zum Zitat Sgora, A., Gizelis, C. A., & Vergados, D. D. (2011). Network selection in a WiMAX–WiFi environment. Pervasive and Mobile Computing, 7(5), 584–594.CrossRef Sgora, A., Gizelis, C. A., & Vergados, D. D. (2011). Network selection in a WiMAX–WiFi environment. Pervasive and Mobile Computing, 7(5), 584–594.CrossRef
53.
Zurück zum Zitat Kuo, Y., Yang, T., & Huang, G. W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computer and Industrial Engineering, 55(1), 80–93.CrossRef Kuo, Y., Yang, T., & Huang, G. W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computer and Industrial Engineering, 55(1), 80–93.CrossRef
Metadaten
Titel
Utility aware network selection in small cell
verfasst von
Meenakshi Munjal
Niraj Pratap Singh
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1676-5

Weitere Artikel der Ausgabe 5/2019

Wireless Networks 5/2019 Zur Ausgabe

Neuer Inhalt