Skip to main content
Erschienen in:

01.10.2024

Utilizing an imaginative approach to examine a fractional Newell–Whitehead–Segel equation based on the Mohand HPA

verfasst von: Sajad Iqbal, Jun Wang

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study implemented a novel technique to address the common issue of stripe pattern formation in 2D systems known as the time-fractional Newell–Whitehead–Segel problem. The study presents the Mohand transforms and their properties in conformable sense. The proposed solution involved utilizing the homotopy perturbation approach (HPA) and conformable Mohand transform (CMT) to tackle four case studies of the time-fractional Newell–Whitehead–Segel problem. The graphical outcomes produced by the suggested approach resembled the exact solution. The effectiveness of the suggested techniques was demonstrated by presenting precise and analytical data through graphs. Additionally, the results of using the suggested technique for different values of \(\alpha \) were compared, showing that as the value moves from a fractional order to an integer order, the answer becomes more and more similar to the exact solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Boutiara A, Kaabar MKA, Siri Z, Samei ME, Yue XG (2022) Investigation of a generalized proportional Langevin and Sturm-Liouville fractional differential equations via variable coefficients and anti-periodic boundary conditions with a control theory application arising from complex networks. Math Probl Eng 2022:21. https://doi.org/10.1155/2022/7018170CrossRef Boutiara A, Kaabar MKA, Siri Z, Samei ME, Yue XG (2022) Investigation of a generalized proportional Langevin and Sturm-Liouville fractional differential equations via variable coefficients and anti-periodic boundary conditions with a control theory application arising from complex networks. Math Probl Eng 2022:21. https://​doi.​org/​10.​1155/​2022/​7018170CrossRef
10.
Zurück zum Zitat Liaqat MI, Etemad S, Rezapour S, Park C (2022) A novel analytical aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Math 7(9):16917–16948MathSciNetCrossRef Liaqat MI, Etemad S, Rezapour S, Park C (2022) A novel analytical aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Math 7(9):16917–16948MathSciNetCrossRef
11.
Zurück zum Zitat Khan A, Liaqat MI, Alqudah MA, Abdeljawad T (2023) Analysis of the conformable temporal-fractional swift-hohenberg equation using a novel computational technique. Fractals 31(04):2340050CrossRef Khan A, Liaqat MI, Alqudah MA, Abdeljawad T (2023) Analysis of the conformable temporal-fractional swift-hohenberg equation using a novel computational technique. Fractals 31(04):2340050CrossRef
15.
Zurück zum Zitat Yang Y-J (2020) The local fractional variational iteration method a promising technology for fractional calculus. Therm Sci 24(4):2605–2614CrossRef Yang Y-J (2020) The local fractional variational iteration method a promising technology for fractional calculus. Therm Sci 24(4):2605–2614CrossRef
16.
Zurück zum Zitat Iqbal S, Martínez F (2024) An innovative approach to approximating solutions of fractional partial differential equations. Phys Scr 99(6):065259CrossRef Iqbal S, Martínez F (2024) An innovative approach to approximating solutions of fractional partial differential equations. Phys Scr 99(6):065259CrossRef
20.
Zurück zum Zitat Chen X, Cui W (2012) The homotopy analysis method to solve time fractional partial differential equations. In: 2012 international conference on computer science and service system, pp 90–93. IEEE Chen X, Cui W (2012) The homotopy analysis method to solve time fractional partial differential equations. In: 2012 international conference on computer science and service system, pp 90–93. IEEE
24.
Zurück zum Zitat Anderson DR, Ulness DJ (2015) Newly defined conformable derivatives. Adv Dyn Syst Appl 10(2):109–137MathSciNet Anderson DR, Ulness DJ (2015) Newly defined conformable derivatives. Adv Dyn Syst Appl 10(2):109–137MathSciNet
26.
Zurück zum Zitat Elzaki TM, Hilal EMA (2012) Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Math Theory Model 2(3):33–42 Elzaki TM, Hilal EMA (2012) Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Math Theory Model 2(3):33–42
30.
Zurück zum Zitat Abdelrahim Mahgoub MM (2016) The new integral transform “mohand transform’’. Adv Theoret Appl Math 11(4):391–398 Abdelrahim Mahgoub MM (2016) The new integral transform “mohand transform’’. Adv Theoret Appl Math 11(4):391–398
33.
Zurück zum Zitat Noorazar SS, Souri M, Nazari-Golshan A (2011) On the exact solution of Newell-Whitehead-Segel equation using the homotopy perturbation method. Australian J Basic Appl Sci 8:1400–1411 Noorazar SS, Souri M, Nazari-Golshan A (2011) On the exact solution of Newell-Whitehead-Segel equation using the homotopy perturbation method. Australian J Basic Appl Sci 8:1400–1411
Metadaten
Titel
Utilizing an imaginative approach to examine a fractional Newell–Whitehead–Segel equation based on the Mohand HPA
verfasst von
Sajad Iqbal
Jun Wang
Publikationsdatum
01.10.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2024
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-024-10381-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.