Skip to main content
Erschienen in: Journal of Materials Science 16/2020

03.03.2020 | Electronic materials

Utilizing Au–CuS heterodimer to intensify upconversion emission of NaGdF4:Yb/Er nanocrystals

verfasst von: Xiao Li, Yao Cheng, Ju Xu, Hang Lin, Yuansheng Wang

Erschienen in: Journal of Materials Science | Ausgabe 16/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Last decade has witnessed the unique ability of localized surface plasmon resonance nanostructure to significantly enhance upconversion luminescence efficiency of lanthanide ions, which has been demonstrated in terms of either increased absorption cross section or accelerated radiative decay rate (Purcell effect) induced by the concentrated electromagnetic field. Herein, we report the upconversion luminescence enhancement of NaGdF4:Yb/Er by dual plasmonic Au–CuS heterodimer nanocrystals, where both the local field enhancement effect and Purcell effect, initialized by different parts of the heterodimer, contribute jointly to the enhancement of upconversion emissions. This work provides the possibility to implement LSPR-based enhancement of upconversion luminescence by metal–semiconductor dual plasmonic antennas, where the judicious combination of active LSPR wavelengths can be manipulated via geometrical design of hetero-nanostructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Han S, Deng R, Xie X, Liu X (2014) Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed 53:11702–11715CrossRef Han S, Deng R, Xie X, Liu X (2014) Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed 53:11702–11715CrossRef
2.
Zurück zum Zitat Wu DM, García-Etxarri A, Salleo A, Dionne JA (2014) Plasmon-enhanced upconversion. J Phys Chem Lett 5:4020–4031CrossRef Wu DM, García-Etxarri A, Salleo A, Dionne JA (2014) Plasmon-enhanced upconversion. J Phys Chem Lett 5:4020–4031CrossRef
3.
Zurück zum Zitat Wilhelm S (2017) Perspectives for upconverting nanoparticles. ACS Nano 11:10644–10653CrossRef Wilhelm S (2017) Perspectives for upconverting nanoparticles. ACS Nano 11:10644–10653CrossRef
4.
Zurück zum Zitat Wang F, Han Y, Lim CS et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065CrossRef Wang F, Han Y, Lim CS et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065CrossRef
5.
Zurück zum Zitat Wang F, Deng R, Wang J et al (2011) Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater 10:968–973CrossRef Wang F, Deng R, Wang J et al (2011) Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater 10:968–973CrossRef
6.
Zurück zum Zitat Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721–13729CrossRef Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721–13729CrossRef
7.
Zurück zum Zitat Liang L, Qin X, Zheng K, Liu X (2018) Energy flux manipulation in upconversion nanosystems. Acc Chem Res 52:228–236CrossRef Liang L, Qin X, Zheng K, Liu X (2018) Energy flux manipulation in upconversion nanosystems. Acc Chem Res 52:228–236CrossRef
8.
Zurück zum Zitat Zhang W, Ding F, Chou SY (2012) Large enhancement of upconversion luminescence of NaYF4:Yb3 +/Er3 + nanocrystal by 3D plasmonic nano-antennas. Adv Mater 24:OP236–OP241 Zhang W, Ding F, Chou SY (2012) Large enhancement of upconversion luminescence of NaYF4:Yb3 +/Er3 + nanocrystal by 3D plasmonic nano-antennas. Adv Mater 24:OP236–OP241
9.
Zurück zum Zitat Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRef Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRef
10.
Zurück zum Zitat Xu W, Chen X, Song H (2017) Upconversion manipulation by local electromagnetic field. Nano Today 17:54–78CrossRef Xu W, Chen X, Song H (2017) Upconversion manipulation by local electromagnetic field. Nano Today 17:54–78CrossRef
11.
Zurück zum Zitat Clarke C, Liu D, Wang F et al (2018) Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale 10:6270–6276CrossRef Clarke C, Liu D, Wang F et al (2018) Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale 10:6270–6276CrossRef
12.
Zurück zum Zitat Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207CrossRef Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207CrossRef
13.
Zurück zum Zitat Ding X, Liow CH, Zhang M et al (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693CrossRef Ding X, Liow CH, Zhang M et al (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693CrossRef
14.
Zurück zum Zitat Sun C, Liu M, Zou Y, Wei J, Jiang J (2016) Synthesis of plasmonic Au–CuS hybrid nanocrystals for photothermal transduction and chemical transformations. RSC Adv 6:26374–26379CrossRef Sun C, Liu M, Zou Y, Wei J, Jiang J (2016) Synthesis of plasmonic Au–CuS hybrid nanocrystals for photothermal transduction and chemical transformations. RSC Adv 6:26374–26379CrossRef
15.
Zurück zum Zitat Zhu H, Wang Y, Chen C et al (2017) Monodisperse dual plasmonic Au@Cu2−xE (E = S, Se) Core@Shell supraparticles: aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 11:8273–8281CrossRef Zhu H, Wang Y, Chen C et al (2017) Monodisperse dual plasmonic Au@Cu2−xE (E = S, Se) Core@Shell supraparticles: aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 11:8273–8281CrossRef
16.
Zurück zum Zitat Muhammed MAH, Döblinger M, Rodríguez-Fernández J (2015) Switching plasmons: gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J Am Chem Soc 137:11666–11677CrossRef Muhammed MAH, Döblinger M, Rodríguez-Fernández J (2015) Switching plasmons: gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J Am Chem Soc 137:11666–11677CrossRef
17.
Zurück zum Zitat Liu X, Lee C, Law W-C et al (2013) Au–Cu2−xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett 13:4333–4339CrossRef Liu X, Lee C, Law W-C et al (2013) Au–Cu2−xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett 13:4333–4339CrossRef
18.
Zurück zum Zitat Zhu D, Liu M, Liu X, Liu Y, Prasad PN, Swihart MT (2017) Au–Cu2−xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J Mater Chem B 5:4934–4942CrossRef Zhu D, Liu M, Liu X, Liu Y, Prasad PN, Swihart MT (2017) Au–Cu2−xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J Mater Chem B 5:4934–4942CrossRef
19.
Zurück zum Zitat Hsu S-W, Ngo C, Tao AR (2014) Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 14:2372–2380CrossRef Hsu S-W, Ngo C, Tao AR (2014) Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 14:2372–2380CrossRef
20.
Zurück zum Zitat Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23:4098–4101CrossRef Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23:4098–4101CrossRef
21.
Zurück zum Zitat Marin BC, Hsu S-W, Chen L et al (2016) Plasmon-enhanced two-photon absorption in photoluminescent semiconductor nanocrystals. ACS Photonics 3:526–531CrossRef Marin BC, Hsu S-W, Chen L et al (2016) Plasmon-enhanced two-photon absorption in photoluminescent semiconductor nanocrystals. ACS Photonics 3:526–531CrossRef
22.
Zurück zum Zitat Liu X, Wang X, Zhou B, Law W-C, Cartwright AN, Swihart MT (2013) Size-controlled synthesis of Cu2−xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv Funct Mater 23:1256–1264CrossRef Liu X, Wang X, Zhou B, Law W-C, Cartwright AN, Swihart MT (2013) Size-controlled synthesis of Cu2−xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv Funct Mater 23:1256–1264CrossRef
23.
Zurück zum Zitat Johnson NJJ, Korinek A, Dong C, van Veggel FCJM (2012) Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134:11068–11071CrossRef Johnson NJJ, Korinek A, Dong C, van Veggel FCJM (2012) Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134:11068–11071CrossRef
24.
Zurück zum Zitat Lei Y, Song H, Yang L et al (2005) Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+, Yb3+ nanowires. J Chem Phy 123:174710CrossRef Lei Y, Song H, Yang L et al (2005) Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+, Yb3+ nanowires. J Chem Phy 123:174710CrossRef
25.
Zurück zum Zitat Saboktakin M, Ye X, Oh SJ et al (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6:8758–8766CrossRef Saboktakin M, Ye X, Oh SJ et al (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6:8758–8766CrossRef
26.
Zurück zum Zitat Wu Y, Xu J, Poh ET et al (2019) Upconversion superburst with sub-2 μs lifetime. Nat Nano 14:1110–1115CrossRef Wu Y, Xu J, Poh ET et al (2019) Upconversion superburst with sub-2 μs lifetime. Nat Nano 14:1110–1115CrossRef
27.
Zurück zum Zitat Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Inter Rev Phy Chem 19:409–453CrossRef Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Inter Rev Phy Chem 19:409–453CrossRef
28.
Zurück zum Zitat Liu H, Huang K, Valiev RR, Zhan Q, Zhang Y, Ågren H (2018) Photon upconversion kinetic nanosystems and their optical response. Laser Photonics Rev 12:1700144CrossRef Liu H, Huang K, Valiev RR, Zhan Q, Zhang Y, Ågren H (2018) Photon upconversion kinetic nanosystems and their optical response. Laser Photonics Rev 12:1700144CrossRef
29.
Zurück zum Zitat Gamelin DR, Gudel HU (2001) In: Yersin H (ed) Transition metal and rare earth compounds: excited states, transitions, interactions II. Springer, Berlin Gamelin DR, Gudel HU (2001) In: Yersin H (ed) Transition metal and rare earth compounds: excited states, transitions, interactions II. Springer, Berlin
30.
Zurück zum Zitat Gamelin DR, Güdel HU (2000) Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Acc Chem Res 33:235–242CrossRef Gamelin DR, Güdel HU (2000) Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Acc Chem Res 33:235–242CrossRef
31.
Zurück zum Zitat Chen B, Liu Y, Xiao Y et al (2016) Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4: Ho nanostructure for direct visualization of electromagnetic hotspots. J Phys Chem Lett 7:4916–4921CrossRef Chen B, Liu Y, Xiao Y et al (2016) Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4: Ho nanostructure for direct visualization of electromagnetic hotspots. J Phys Chem Lett 7:4916–4921CrossRef
32.
Zurück zum Zitat Runnerstrom EL, Bergerud A, Agrawal A et al (2016) Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett 16:3390–3398CrossRef Runnerstrom EL, Bergerud A, Agrawal A et al (2016) Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett 16:3390–3398CrossRef
33.
Zurück zum Zitat Lu D, Cho S, Ahn S et al (2014) Plasmon enhancement mechanism for the upconversion processes in NaYF4: Yb3 + , Er3 + nanoparticles: maxwell versus förster. ACS Nano 8:7780–7792CrossRef Lu D, Cho S, Ahn S et al (2014) Plasmon enhancement mechanism for the upconversion processes in NaYF4: Yb3 + , Er3 + nanoparticles: maxwell versus förster. ACS Nano 8:7780–7792CrossRef
34.
Zurück zum Zitat Zhou D, Liu D, Xu W et al (2016) Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles. ACS Nano 10:5169–5179CrossRef Zhou D, Liu D, Xu W et al (2016) Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles. ACS Nano 10:5169–5179CrossRef
Metadaten
Titel
Utilizing Au–CuS heterodimer to intensify upconversion emission of NaGdF4:Yb/Er nanocrystals
verfasst von
Xiao Li
Yao Cheng
Ju Xu
Hang Lin
Yuansheng Wang
Publikationsdatum
03.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04512-x

Weitere Artikel der Ausgabe 16/2020

Journal of Materials Science 16/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.