Skip to main content
Erschienen in: International Journal of Computer Vision 1/2015

01.03.2015

Utilizing Local Phase Information to Remove Rain from Video

verfasst von: Varun Santhaseelan, Vijayan K. Asari

Erschienen in: International Journal of Computer Vision | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the context of extracting information from video, bad weather conditions like rain can have a detrimental effect. In this paper, a novel framework to detect and remove rain streaks from video is proposed. The first part of the proposed framework for rain removal is a technique to detect rain streaks based on phase congruency features. The variation of features from frame to frame is used to estimate the candidate rain pixels in a frame. In order to reduce the number of false candidates due to global motion, frames are registered using phase correlation. The second part of the proposed framework is a novel reconstruction technique that utilizes information from three different sources, which are intensities of the rain affected pixel, spatial neighbors, and temporal neighbors. An optimal estimate for the actual intensity of the rain affected pixel is made based on the minimization of registration error between frames. An optical flow technique using local phase information is adopted for registration. This part of the proposed framework for removing rain is modeled such that the presence of local motion will not distort the features in the reconstructed video. The proposed framework is evaluated quantitatively and qualitatively on a variety of videos with varying complexities. The effectiveness of the algorithm is quantitatively verified by computing a no-reference image quality measure on individual frames of the reconstructed video. From a variety of experiments that are performed on output videos, it is shown that the proposed technique performs better than state-of-the-art techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alessandrini, M., Basarab, A., Liebgott, H., & Bernard, O. (2013). Myocardial motion estimation from medical images using the monogenic signal. IEEE Transactions on Image Processing, 22(3), 1084–1095.CrossRefMathSciNet Alessandrini, M., Basarab, A., Liebgott, H., & Bernard, O. (2013). Myocardial motion estimation from medical images using the monogenic signal. IEEE Transactions on Image Processing, 22(3), 1084–1095.CrossRefMathSciNet
Zurück zum Zitat Barnum, P. C., Narasimhan, S., & Kanade, T. (2010). Analysis of rain and snow in frequency space. International Journal of Computer Vision, 86(2–3), 256–274.CrossRef Barnum, P. C., Narasimhan, S., & Kanade, T. (2010). Analysis of rain and snow in frequency space. International Journal of Computer Vision, 86(2–3), 256–274.CrossRef
Zurück zum Zitat Bossu, J., Hautière, N., & Tarel, J. P. (2011). Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Comput Vision, 93(3), 348–367.CrossRef Bossu, J., Hautière, N., & Tarel, J. P. (2011). Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Comput Vision, 93(3), 348–367.CrossRef
Zurück zum Zitat Brewer, N. (2008). Using the shape characteristics of rain to identify and remove rain from video. Structural, syntactic, and statistical pattern recognition (pp. 451–458). Berlin: Springer.CrossRef Brewer, N. (2008). Using the shape characteristics of rain to identify and remove rain from video. Structural, syntactic, and statistical pattern recognition (pp. 451–458). Berlin: Springer.CrossRef
Zurück zum Zitat Felsberg, M. (2007). Optical flow estimation from monogenic phase. Complex motion (pp. 1–13). Berlin: Springer.CrossRef Felsberg, M. (2007). Optical flow estimation from monogenic phase. Complex motion (pp. 1–13). Berlin: Springer.CrossRef
Zurück zum Zitat Field, D. J., et al. (1987). Relations between the statistics of natural images and the response properties of cortical cells. The Journal of the Optical Society of America A, 4(12), 2379–2394.CrossRef Field, D. J., et al. (1987). Relations between the statistics of natural images and the response properties of cortical cells. The Journal of the Optical Society of America A, 4(12), 2379–2394.CrossRef
Zurück zum Zitat Garg, K., & Nayar, S. (2004). Detection and removal of rain from videos. In CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, (vol. 1, pp. I-528–I-535). Garg, K., & Nayar, S. (2004). Detection and removal of rain from videos. In CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, (vol. 1, pp. I-528–I-535).
Zurück zum Zitat Garg, K., & Nayar, S. (2007). Vision and rain. International Journal of Computer Vision, 75(1), 3–27.CrossRef Garg, K., & Nayar, S. (2007). Vision and rain. International Journal of Computer Vision, 75(1), 3–27.CrossRef
Zurück zum Zitat Garg, K., & Nayar, S. K. (2003). Photometric model of a rain drop. Technical Report, New York: Columbia University. Garg, K., & Nayar, S. K. (2003). Photometric model of a rain drop. Technical Report, New York: Columbia University.
Zurück zum Zitat Hase, H., Miyake, K. & Yoneda, M. (1999). Real-time snowfall noise elimination. In Proceedings of International Conference on Image Processing, ICIP 99 (vol. 2, pp. 406–409). Hase, H., Miyake, K. & Yoneda, M. (1999). Real-time snowfall noise elimination. In Proceedings of International Conference on Image Processing, ICIP 99 (vol. 2, pp. 406–409).
Zurück zum Zitat Huang, D. A., Kang, L. W., Yang, M. C., Lin, C. W., & Wang, Y. C. (2012). Context-aware single image rain removal. In 2012 IEEE International Conference on Multimedia and Expo (ICME) (pp. 164–169). Huang, D. A., Kang, L. W., Yang, M. C., Lin, C. W., & Wang, Y. C. (2012). Context-aware single image rain removal. In 2012 IEEE International Conference on Multimedia and Expo (ICME) (pp. 164–169).
Zurück zum Zitat Kang, L. W., Lin, C. W., & Fu, Y. H. (2012a). Automatic single-image-based rain streaks removal via image decomposition. IEEE Transactions on Image Processing, 21(4), 1742–1755.CrossRefMathSciNet Kang, L. W., Lin, C. W., & Fu, Y. H. (2012a). Automatic single-image-based rain streaks removal via image decomposition. IEEE Transactions on Image Processing, 21(4), 1742–1755.CrossRefMathSciNet
Zurück zum Zitat Kang, L. W., Lin, C. W., Lin, C. T. & Lin, Y. C. (2012b). Self-learning-based rain streak removal for image/video. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1871–1874). Kang, L. W., Lin, C. W., Lin, C. T. & Lin, Y. C. (2012b). Self-learning-based rain streak removal for image/video. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1871–1874).
Zurück zum Zitat Kim, J. H., Lee, C., Sim, J. Y., & Kim, C. S. (2013). Single-image deraining using an adaptive nonlocal means filter. In 2013 20th IEEE International Conference on Image Processing (ICIP) (pp. 914–917). Kim, J. H., Lee, C., Sim, J. Y., & Kim, C. S. (2013). Single-image deraining using an adaptive nonlocal means filter. In 2013 20th IEEE International Conference on Image Processing (ICIP) (pp. 914–917).
Zurück zum Zitat Kovesi, P. (1999). Image features from phase congruency. VIDERE: Journal of Computer Vision Research, 1(3), 1–26. Kovesi, P. (1999). Image features from phase congruency. VIDERE: Journal of Computer Vision Research, 1(3), 1–26.
Zurück zum Zitat Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRef Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRef
Zurück zum Zitat Mechler, F., Reich, D. S., & Victor, J. D. (2002). Detection and discrimination of relative spatial phase by v1 neurons. The Journal of Neuroscience, 22, 6129–6157. Mechler, F., Reich, D. S., & Victor, J. D. (2002). Detection and discrimination of relative spatial phase by v1 neurons. The Journal of Neuroscience, 22, 6129–6157.
Zurück zum Zitat Moorthy, A. K., & Bovik, A. C. (2010). A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 17(5), 513–516.CrossRef Moorthy, A. K., & Bovik, A. C. (2010). A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 17(5), 513–516.CrossRef
Zurück zum Zitat Morrone, M., & Owens, R. (1987). Feature detection from local energy. Pattern Recognition Letters, 6(5), 303–313.CrossRef Morrone, M., & Owens, R. (1987). Feature detection from local energy. Pattern Recognition Letters, 6(5), 303–313.CrossRef
Zurück zum Zitat Narasimhan, S., & Nayar, S. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254.CrossRefMATH Narasimhan, S., & Nayar, S. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254.CrossRefMATH
Zurück zum Zitat Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.CrossRef Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.CrossRef
Zurück zum Zitat Park, W. J., & Lee, K. H. (2008). Rain removal using kalman filter in video. In International Conference on Smart Manufacturing Application, ICSMA 2008 (pp. 494–497). Park, W. J., & Lee, K. H. (2008). Rain removal using kalman filter in video. In International Conference on Smart Manufacturing Application, ICSMA 2008 (pp. 494–497).
Zurück zum Zitat Reddy, B., & Chatterji, B. N. (1996). An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing, 5(8), 1266–1271.CrossRef Reddy, B., & Chatterji, B. N. (1996). An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing, 5(8), 1266–1271.CrossRef
Zurück zum Zitat Santhaseelan, V., & Asari, V. K. (2011). Phase congruency based technique for the removal of rain from video. Image analysis and recognition (pp. 30–39). Berlin: Springer.CrossRef Santhaseelan, V., & Asari, V. K. (2011). Phase congruency based technique for the removal of rain from video. Image analysis and recognition (pp. 30–39). Berlin: Springer.CrossRef
Zurück zum Zitat Santhaseelan, V., & Asari, V. K. (2012). A phase space approach for detection and removal of rain in video. In IS&T/SPIE Electronic Imaging, (pp. 830,114–830,114). Santhaseelan, V., & Asari, V. K. (2012). A phase space approach for detection and removal of rain in video. In IS&T/SPIE Electronic Imaging, (pp. 830,114–830,114).
Zurück zum Zitat Shen, M., Xue, P. (2011). A fast algorithm for rain detection and removal from videos. In 2011 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6). Shen, M., Xue, P. (2011). A fast algorithm for rain detection and removal from videos. In 2011 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6).
Zurück zum Zitat Starik, S., & Werman, M. (2003). Simulation of rain in videos. ICCV texture workshop, 2, 406–409. Starik, S., & Werman, M. (2003). Simulation of rain in videos. ICCV texture workshop, 2, 406–409.
Zurück zum Zitat Tripathi, A., & Mukhopadhyay, S. (2011). A probabilistic approach for detection and removal of rain from videos. IETE Journal of Research, 57(1), 82–91.CrossRef Tripathi, A., & Mukhopadhyay, S. (2011). A probabilistic approach for detection and removal of rain from videos. IETE Journal of Research, 57(1), 82–91.CrossRef
Zurück zum Zitat Tripathi, A., & Mukhopadhyay, S. (2012a). Removal of rain from videos: A review. Signal, Image and Video Processing, 1(8), 1–10. Tripathi, A., & Mukhopadhyay, S. (2012a). Removal of rain from videos: A review. Signal, Image and Video Processing, 1(8), 1–10.
Zurück zum Zitat Tripathi, A., & Mukhopadhyay, S. (2012b). Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Processing, 6(2), 181–196.CrossRefMathSciNet Tripathi, A., & Mukhopadhyay, S. (2012b). Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Processing, 6(2), 181–196.CrossRefMathSciNet
Zurück zum Zitat Unser, M., Sage, D., & Ville, D. V. D. (2009). Multiresolution monogenic signal analysis using the riesz-laplace wavelet transform. IEEE Transactions on Image Processing, 18(11), 2402–2418.CrossRefMathSciNet Unser, M., Sage, D., & Ville, D. V. D. (2009). Multiresolution monogenic signal analysis using the riesz-laplace wavelet transform. IEEE Transactions on Image Processing, 18(11), 2402–2418.CrossRefMathSciNet
Zurück zum Zitat Venkatesh, S. & Owens, R. (1989). An energy feature detection scheme. In IEEE International Conference on Image Processing: Conference Proceedings ICIP’89, Sep 5–8 1989, Singapore: IEEE. Venkatesh, S. & Owens, R. (1989). An energy feature detection scheme. In IEEE International Conference on Image Processing: Conference Proceedings ICIP’89, Sep 5–8 1989, Singapore: IEEE.
Zurück zum Zitat Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.CrossRef Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.CrossRef
Zurück zum Zitat Wadhwa, N., Rubinstein, M., Durand, F. & Freeman, W. T. (2013). Phase-based video motion processing. In Proceedings SIGGRAPH on ACM Transactions Graph (vol. 32(4), pp. 80). Wadhwa, N., Rubinstein, M., Durand, F. & Freeman, W. T. (2013). Phase-based video motion processing. In Proceedings SIGGRAPH on ACM Transactions Graph (vol. 32(4), pp. 80).
Zurück zum Zitat Xue, X., Jin, X., Zhang, C. & Goto, S. (2012). Motion robust rain detection and removal from videos. In 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP) (pp. 170–174). Xue, X., Jin, X., Zhang, C. & Goto, S. (2012). Motion robust rain detection and removal from videos. In 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP) (pp. 170–174).
Zurück zum Zitat Zhang, X., Li, H., Qi, Y., Leow, W. K. & Ng, T. K. (2006). Rain removal in video by combining temporal and chromatic properties. In 2006 IEEE International Conference on Multimedia and Expo (pp. 461–464). Zhang, X., Li, H., Qi, Y., Leow, W. K. & Ng, T. K. (2006). Rain removal in video by combining temporal and chromatic properties. In 2006 IEEE International Conference on Multimedia and Expo (pp. 461–464).
Metadaten
Titel
Utilizing Local Phase Information to Remove Rain from Video
verfasst von
Varun Santhaseelan
Vijayan K. Asari
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 1/2015
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-014-0759-8

Weitere Artikel der Ausgabe 1/2015

International Journal of Computer Vision 1/2015 Zur Ausgabe