Skip to main content

2025 | OriginalPaper | Buchkapitel

Utilizing the Power of Residual and Attention Properties with Binary Focal Loss Optimization for Underwater Image Segmentation Using UNet Architecture

verfasst von : Geomol George, S. Anusuya

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent developments in deep-sea exploration, environmental surveillance, and ocean research, accurate segmentation of underwater images is essential. This study pursues this goal by exploring underwater image segmentation from a deep learning perspective. It specifically looks at how well the Attention Residual UNet architecture, a more sophisticated version of the U-Net, works with the focal loss technique to achieve accuracy in this crucial task. Using attention mechanisms and residual connections, the Attention Residual UNet architecture, based on the U-Net framework, can capture fine details while maintaining contextual coherence. Model loss and accuracy measures are considered as this study carefully assesses the architecture’s performance. Notably, the model exhibits outstanding accuracy, obtaining 97.23% and 92.76% accuracy on the training and validation sets, respectively. The Jaccard coefficient further demonstrates the model’s efficiency, which measures the intersection between predicted and actual segments and has coefficients for the model and validation sets of 74.31% and 66.51% , respectively. The Mean Intersection over Union (MIoU) statistic, which boasts a value 91.24%, validates the model’s superiority.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Worm B (2020) Rebuilding marine life. Nature 580(7801):39–51CrossRef Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Worm B (2020) Rebuilding marine life. Nature 580(7801):39–51CrossRef
2.
Zurück zum Zitat Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference proceedings (IEEE Cat. No. 01CH37295), vol 1. IEEE, pp 409–416 Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference proceedings (IEEE Cat. No. 01CH37295), vol 1. IEEE, pp 409–416
3.
Zurück zum Zitat Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRef Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRef
4.
Zurück zum Zitat Schettini R, Corchs S (2010) Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J Adv Signal Processing 2010:1–14CrossRef Schettini R, Corchs S (2010) Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J Adv Signal Processing 2010:1–14CrossRef
5.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
6.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention? MICCAI 2015: 18th international conference, Munich, Germany, 5–9 Oct 2015, Proceedings, Part III 18. Springer International Publishing, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention? MICCAI 2015: 18th international conference, Munich, Germany, 5–9 Oct 2015, Proceedings, Part III 18. Springer International Publishing, pp 234–241
7.
Zurück zum Zitat Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:​1804.​03999
8.
Zurück zum Zitat Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:​1802.​06955
9.
Zurück zum Zitat Li Z, Kamnitsas K, Glocker B (2019) Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Medical image computing and computer assisted intervention? MICCAI 2019: 22nd international conference, Shenzhen, China, 13–17 Oct 2019, Proceedings, Part III 22. Springer International Publishing, pp 402–410 Li Z, Kamnitsas K, Glocker B (2019) Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Medical image computing and computer assisted intervention? MICCAI 2019: 22nd international conference, Shenzhen, China, 13–17 Oct 2019, Proceedings, Part III 22. Springer International Publishing, pp 402–410
10.
Zurück zum Zitat Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988 Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
14.
Zurück zum Zitat Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988 Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
15.
Zurück zum Zitat Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big data 6(1):1–48CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big data 6(1):1–48CrossRef
16.
Zurück zum Zitat Deng J et al (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE Deng J et al (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE
17.
Zurück zum Zitat Zitzler E et al (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132 Zitzler E et al (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132
18.
Zurück zum Zitat Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753CrossRef Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753CrossRef
19.
Zurück zum Zitat Ni Z-L et al (2019) Raunet: residual attention u-net for semantic segmentation of cataract surgical instruments. In: International conference on neural information processing. Springer International Publishing, Cham Ni Z-L et al (2019) Raunet: residual attention u-net for semantic segmentation of cataract surgical instruments. In: International conference on neural information processing. Springer International Publishing, Cham
Metadaten
Titel
Utilizing the Power of Residual and Attention Properties with Binary Focal Loss Optimization for Underwater Image Segmentation Using UNet Architecture
verfasst von
Geomol George
S. Anusuya
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_9