Skip to main content
Erschienen in: Journal of Materials Science 9/2017

04.01.2017 | Original Paper

UV-assisted reduction of graphite oxide to graphene by using a photoinitiator

verfasst von: Bing Xue, Yingquan Zou, Yuchun Yang

Erschienen in: Journal of Materials Science | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Being a highly promising material, graphene has triggered a great attention within researchers as-well-as has obtained some achievements in specific application areas. However, applying graphene to electronic devices via a facile method has proven to be difficult. Here, we have fabricated graphene by reducing graphene oxide (GO) under a 395 nm ultraviolet (UV) irradiation in a suspension containing Bis(cyclopentadienyl)bis[2,6-difluoro-3-(1-pyrryl)phenyl]titanium (GR-FMT) and GO. GR-FMT is an efficient free-radical type of photoinitiator, which is commonly used in photoresists. GO quickly reduces to graphene by accepting electrons generated by the decomposition of the GR-FMT photoinitiator under UV irradiation. Here, the GR-FMT plays both reductant and deoxidant roles and highly improves the reducing reaction efficiency. Photo etching is a commonly used technique in electronic device technology; however, its application to the mass production of GO, to be used in practical nano-devices and integrated circuits, is still an unresolved problem. To address this problem, in this work, graphene oxide is suspended in ethanol and it undergoes reduction by the UV-irradiated GR-FMT suspension; the corresponding mechanism is explored. This methodology turns out to be a novel and facile UV-assisted reduction technique with the advantage of being time-efficient and energy-efficient, simple, scalable, and environmental friendly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRef
2.
Zurück zum Zitat Cao XH, Shi YM, Shi WH, Lu G, Huang X, Yan QY, Zhang QC, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22):3163–3168CrossRef Cao XH, Shi YM, Shi WH, Lu G, Huang X, Yan QY, Zhang QC, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22):3163–3168CrossRef
3.
Zurück zum Zitat Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976CrossRef Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976CrossRef
4.
Zurück zum Zitat He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H, Chen P, Zhang H (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6):5038–5044CrossRef He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H, Chen P, Zhang H (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6):5038–5044CrossRef
5.
Zurück zum Zitat Radich JG, Krenselewski AL, Zhu JD, Kamat PV (2014) Is graphene a stable platform for photocatalysis? mineralization of reduced graphene oxide With UV-irradiated TiO2 nanoparticles. Chem Mater 26(15):4662–4668CrossRef Radich JG, Krenselewski AL, Zhu JD, Kamat PV (2014) Is graphene a stable platform for photocatalysis? mineralization of reduced graphene oxide With UV-irradiated TiO2 nanoparticles. Chem Mater 26(15):4662–4668CrossRef
6.
Zurück zum Zitat Huang CC, Li C, Shi GQ (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868CrossRef Huang CC, Li C, Shi GQ (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868CrossRef
7.
Zurück zum Zitat Cho SH, Yang HN, Lee DC, Park SH, Kim WJ (2013) Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. J Power Sources 225(225):200–206CrossRef Cho SH, Yang HN, Lee DC, Park SH, Kim WJ (2013) Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. J Power Sources 225(225):200–206CrossRef
8.
Zurück zum Zitat Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994CrossRef Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994CrossRef
9.
Zurück zum Zitat Wang M, Fu L, Gan L, Zhang CH, Rümmeli M, Bachmatiuk A, Huang K, Fang Y, Liu ZF (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238 Wang M, Fu L, Gan L, Zhang CH, Rümmeli M, Bachmatiuk A, Huang K, Fang Y, Liu ZF (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238
10.
Zurück zum Zitat Zhang CH, Zhao SL, Jin CH, Koh AL, Zhou Y, Xu WG, Li QC, Xiong QH, Peng HL, Liu ZF (2015) Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat Commun 6:6519CrossRef Zhang CH, Zhao SL, Jin CH, Koh AL, Zhou Y, Xu WG, Li QC, Xiong QH, Peng HL, Liu ZF (2015) Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat Commun 6:6519CrossRef
11.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
12.
Zurück zum Zitat Pang SP, Englert JM, Tsao HN, Hernandez Y, Hirsch A, Feng XL, Mullen K (2010) Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene. Adv Mater 22(47):5374–5377CrossRef Pang SP, Englert JM, Tsao HN, Hernandez Y, Hirsch A, Feng XL, Mullen K (2010) Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene. Adv Mater 22(47):5374–5377CrossRef
13.
Zurück zum Zitat Jiao LY, Wang XR, Diankov G, Wang HL, Dai HJ (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325CrossRef Jiao LY, Wang XR, Diankov G, Wang HL, Dai HJ (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325CrossRef
14.
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price K, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price K, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef
15.
Zurück zum Zitat Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912CrossRef Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912CrossRef
16.
Zurück zum Zitat Park S, Ruoff RS (2010) Chemical methods for the production of graphenes. Nat Nanotechnol 5(4):217–224CrossRef Park S, Ruoff RS (2010) Chemical methods for the production of graphenes. Nat Nanotechnol 5(4):217–224CrossRef
17.
Zurück zum Zitat Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20(12):2277–2289CrossRef Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20(12):2277–2289CrossRef
18.
Zurück zum Zitat Chua CK, Pumera M (2013) Reduction of graphene oxide with substituted borohydrides. J Mater Chem A 1(5):1892–1898CrossRef Chua CK, Pumera M (2013) Reduction of graphene oxide with substituted borohydrides. J Mater Chem A 1(5):1892–1898CrossRef
19.
Zurück zum Zitat Gao J, Liu F, Liu YL, Ma N, Wang ZQ, Zhang X (2010) Environment-friendly method to produce Graphene that employs Vitamin C and amino acid. Chem Mater 22(7):2213–2218CrossRef Gao J, Liu F, Liu YL, Ma N, Wang ZQ, Zhang X (2010) Environment-friendly method to produce Graphene that employs Vitamin C and amino acid. Chem Mater 22(7):2213–2218CrossRef
20.
Zurück zum Zitat Chua CK, Ambrosi A, Pumera M (2012) Graphene oxide reduction by standard industrial reducing agent: thiourea Dioxide. J Mater Chem 22(22):11054–11061CrossRef Chua CK, Ambrosi A, Pumera M (2012) Graphene oxide reduction by standard industrial reducing agent: thiourea Dioxide. J Mater Chem 22(22):11054–11061CrossRef
21.
Zurück zum Zitat Salas EC, Sun Z, Lüttge A, Tour JM (2010) Reduction of Graphene Oxide via bacterial respiration. ACS Nano 4(8):4852–4856CrossRef Salas EC, Sun Z, Lüttge A, Tour JM (2010) Reduction of Graphene Oxide via bacterial respiration. ACS Nano 4(8):4852–4856CrossRef
22.
Zurück zum Zitat Guo C, Book-Newell B, Irudayaraj J (2011) Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 47(47):12658–12660CrossRef Guo C, Book-Newell B, Irudayaraj J (2011) Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 47(47):12658–12660CrossRef
23.
Zurück zum Zitat Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S (2011) Reducing Graphene Oxide via hydroxylamine: a simple and efficient route to Graphene. J Phys Chem C 115(24):11957–11961CrossRef Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S (2011) Reducing Graphene Oxide via hydroxylamine: a simple and efficient route to Graphene. J Phys Chem C 115(24):11957–11961CrossRef
24.
Zurück zum Zitat Ambrosi A, Chua CK, Bonanni A, Pumera M (2012) Lithium Aluminum hydride as reducing agent for chemically reduced Graphene Oxides. Chem Mater 24(12):2292–2298CrossRef Ambrosi A, Chua CK, Bonanni A, Pumera M (2012) Lithium Aluminum hydride as reducing agent for chemically reduced Graphene Oxides. Chem Mater 24(12):2292–2298CrossRef
25.
Zurück zum Zitat Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnol 22(5):055705–055712CrossRef Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnol 22(5):055705–055712CrossRef
26.
Zurück zum Zitat Akhavan O (2010) The effect of heat treatment on formation of Graphene thin films from Graphene Oxide nanosheets. Carbon 48(2):509–519CrossRef Akhavan O (2010) The effect of heat treatment on formation of Graphene thin films from Graphene Oxide nanosheets. Carbon 48(2):509–519CrossRef
27.
Zurück zum Zitat Chen W, Yan L, Bangal PR (2010) Preparation of Graphene by the rapid and mild thermal reduction of Graphene Oxide induced by microwaves. Carbon 48(4):1146–1152CrossRef Chen W, Yan L, Bangal PR (2010) Preparation of Graphene by the rapid and mild thermal reduction of Graphene Oxide induced by microwaves. Carbon 48(4):1146–1152CrossRef
28.
Zurück zum Zitat Zhou M, Wang YL, Zhai YM, Zhai JF, Ren W, Wang F, Dong SJ (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15(25):6116–6120CrossRef Zhou M, Wang YL, Zhai YM, Zhai JF, Ren W, Wang F, Dong SJ (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15(25):6116–6120CrossRef
29.
Zurück zum Zitat Strong V, Dubin S, Elkady MF, Lech A, Wang Y, Weiller BH, Kaner RB (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6(2):1395–1403CrossRef Strong V, Dubin S, Elkady MF, Lech A, Wang Y, Weiller BH, Kaner RB (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6(2):1395–1403CrossRef
30.
Zurück zum Zitat Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52(1):574–582CrossRef Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52(1):574–582CrossRef
31.
Zurück zum Zitat ZhangYL Guo L, Xia H, Chen QD, Feng J, Sun HB (2014) Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2(1):10–28CrossRef ZhangYL Guo L, Xia H, Chen QD, Feng J, Sun HB (2014) Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2(1):10–28CrossRef
32.
Zurück zum Zitat Williams G, Seger B, Kamat PV (2008) TiO2-Graphene Nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef Williams G, Seger B, Kamat PV (2008) TiO2-Graphene Nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef
33.
Zurück zum Zitat Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959CrossRef Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959CrossRef
34.
Zurück zum Zitat Degirmenci M, Onen A, Yagci Y, Pappas SP (2001) Photoinitiation of cationic polymerization by visible light activated titanocene in the presence of onium salts. Polym Bull 46(6):443–449CrossRef Degirmenci M, Onen A, Yagci Y, Pappas SP (2001) Photoinitiation of cationic polymerization by visible light activated titanocene in the presence of onium salts. Polym Bull 46(6):443–449CrossRef
35.
Zurück zum Zitat Lin SH, Hsiao YN, Hsu KY (2009) Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm. J Opt A: Pure Appl Opt 11(2):24012–24020CrossRef Lin SH, Hsiao YN, Hsu KY (2009) Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm. J Opt A: Pure Appl Opt 11(2):24012–24020CrossRef
36.
Zurück zum Zitat Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11(10):4129–4134CrossRef Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11(10):4129–4134CrossRef
37.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef
38.
Zurück zum Zitat Giuffrida S, Condorelli GG, Costanzo LL, Fragala IL, Ventimiglia G, Vecchio G (2004) Photochemical mechanism of the formation of nanometer-sized copper by UV irradiation of ethanol bis(2,4-pentanedionato)copper(II) solutions. Chem Mater 16(7):1260–1266CrossRef Giuffrida S, Condorelli GG, Costanzo LL, Fragala IL, Ventimiglia G, Vecchio G (2004) Photochemical mechanism of the formation of nanometer-sized copper by UV irradiation of ethanol bis(2,4-pentanedionato)copper(II) solutions. Chem Mater 16(7):1260–1266CrossRef
39.
Zurück zum Zitat Condorelli GG, Costanzo LL, Fragala IL, Giuffrida S, Ventimiglia G (2003) A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. J Mater Chem 13(10):2409–2411CrossRef Condorelli GG, Costanzo LL, Fragala IL, Giuffrida S, Ventimiglia G (2003) A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. J Mater Chem 13(10):2409–2411CrossRef
40.
Zurück zum Zitat Celiešiūtė R, Trusovas R, Niaura G, Švedas V, Račiukaitis G, Ruželė Ž, Pauliukaite R (2014) Influence of the laser irradiation on the electrochemical and spectroscopic peculiarities of graphene-chitosan composite. Electrochim Acta 132(19):265–276 Celiešiūtė R, Trusovas R, Niaura G, Švedas V, Račiukaitis G, Ruželė Ž, Pauliukaite R (2014) Influence of the laser irradiation on the electrochemical and spectroscopic peculiarities of graphene-chitosan composite. Electrochim Acta 132(19):265–276
41.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. J Phys Rev B 61(20):14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. J Phys Rev B 61(20):14095–14107CrossRef
42.
Zurück zum Zitat Cancado LG, Jorio A, Ferreira EH, Stavale F, Achete CA, Capaz RB, Mountinho MV, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196CrossRef Cancado LG, Jorio A, Ferreira EH, Stavale F, Achete CA, Capaz RB, Mountinho MV, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196CrossRef
43.
Zurück zum Zitat Tang H, Gao PB, Bao ZH, Zhou B, Shen J, Mei YF, Wu GM (2015) Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies. Nano Res 8(5):1710–1717CrossRef Tang H, Gao PB, Bao ZH, Zhou B, Shen J, Mei YF, Wu GM (2015) Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies. Nano Res 8(5):1710–1717CrossRef
44.
Zurück zum Zitat Min SX, Lu GX (2011) Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J Phys Chem C 115(28):13938–13945CrossRef Min SX, Lu GX (2011) Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J Phys Chem C 115(28):13938–13945CrossRef
45.
Zurück zum Zitat Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992CrossRef Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992CrossRef
46.
47.
Zurück zum Zitat Sabol D, Gleeson MR, Liu S, Sheridan JT (2010) Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer. J Appl Phys 107(5):053113–053118CrossRef Sabol D, Gleeson MR, Liu S, Sheridan JT (2010) Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer. J Appl Phys 107(5):053113–053118CrossRef
48.
Zurück zum Zitat Howe RF, Graetzel M (1985) EPR observation of trapped electrons in colloidal TiO2. J Phys Chem 89(21):4495–4499CrossRef Howe RF, Graetzel M (1985) EPR observation of trapped electrons in colloidal TiO2. J Phys Chem 89(21):4495–4499CrossRef
49.
Zurück zum Zitat Ligon SC, Husár B, Wutzel H, Holman R, Liska R (2013) Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev 114(1):557–589CrossRef Ligon SC, Husár B, Wutzel H, Holman R, Liska R (2013) Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev 114(1):557–589CrossRef
50.
Zurück zum Zitat Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRef
51.
Zurück zum Zitat Mazánek V, Jankovský O, Luxa J, Sedmidubský D, Janoušek Z, Šembera F, Mikulicsc M, Sofer Z (2015) Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale 7(32):13646–13655CrossRef Mazánek V, Jankovský O, Luxa J, Sedmidubský D, Janoušek Z, Šembera F, Mikulicsc M, Sofer Z (2015) Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale 7(32):13646–13655CrossRef
52.
Zurück zum Zitat Dubal DP, Holze R (2013) All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51(2):407–412CrossRef Dubal DP, Holze R (2013) All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51(2):407–412CrossRef
53.
Zurück zum Zitat Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem Eur J 17(38):10763–10770CrossRef Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem Eur J 17(38):10763–10770CrossRef
54.
Zurück zum Zitat Cao XR, Tian GH, Chen YJ, Zhou J, Zhou W, Tian CG, Fu HG (2014) Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. J Mater Chem A 2(12):4366–4374CrossRef Cao XR, Tian GH, Chen YJ, Zhou J, Zhou W, Tian CG, Fu HG (2014) Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. J Mater Chem A 2(12):4366–4374CrossRef
55.
Zurück zum Zitat Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355CrossRef Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355CrossRef
56.
Zurück zum Zitat Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42(14):1741–1746CrossRef Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42(14):1741–1746CrossRef
57.
Zurück zum Zitat Wang GX, Yang J, Park JS, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef Wang GX, Yang J, Park JS, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef
58.
Zurück zum Zitat Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, El-Shall MS (2010) Photothermal deoxygenation of graphene oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1(19):2804–2809CrossRef Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, El-Shall MS (2010) Photothermal deoxygenation of graphene oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1(19):2804–2809CrossRef
59.
Zurück zum Zitat Zhou Y, Bao QL, Varghese B, Tang LAL, Tan CK, Sow CH, Loh KP (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22(1):67–71CrossRef Zhou Y, Bao QL, Varghese B, Tang LAL, Tan CK, Sow CH, Loh KP (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22(1):67–71CrossRef
60.
Zurück zum Zitat Prezioso S, Perrozzi F, Donarelli M, Bisti F, Santucci S, Palladino L, Nardone M, Treossi E, Palermo V, Ottaviano L (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28(12):5489–5495CrossRef Prezioso S, Perrozzi F, Donarelli M, Bisti F, Santucci S, Palladino L, Nardone M, Treossi E, Palermo V, Ottaviano L (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28(12):5489–5495CrossRef
Metadaten
Titel
UV-assisted reduction of graphite oxide to graphene by using a photoinitiator
verfasst von
Bing Xue
Yingquan Zou
Yuchun Yang
Publikationsdatum
04.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0721-y

Weitere Artikel der Ausgabe 9/2017

Journal of Materials Science 9/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.