Skip to main content

2018 | OriginalPaper | Buchkapitel

UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response

verfasst von : L. Francioso, G. Malucelli, A. Fioravanti, C. De Pascali, M. A. Signore, M. C. Carotta, A. Bonanno, D. Duraccio

Erschienen in: Sensors and Microsystems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a facile aqueous sol-gel approach was exploited for synthesizing different ZnO nanostructures; these latter were employed at 4 wt% loading in a UV-curable acrylic system. The piezoelectric behavior of the resulting UV-cured nanocomposite films (NCFs) at resonance and at low frequency (150 Hz, typical value of interest in energy harvesting applications) was thoroughly investigated and correlated to the structure and morphology of the utilized ZnO nanostructures. For this purpose, the NCFs were used as active material into cantilever-shaped energy harvesters obtained through standard microfabrication technology. Interesting piezoelectric behavior was found for all the prepared UV-cured nanostructured films; the piezoelectric response of the different nanofillers was compared in terms of RMS voltage measured as a function of the applied waveform and normalized to the maximum acceleration applied to the cantilever devices. The obtained results confirmed the promising energy harvesting capability of such ZnO nanostructured films. In particular, flower-like structures showed the best piezoelectric performance both at resonance and 150 Hz, gaining a maximum normalized RMS of 0.914 mV and a maximum peak-peak voltage of about 16.0 mVp-p corresponding to the application of 5.79 g acceleration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRef Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRef
2.
Zurück zum Zitat Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)CrossRef Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)CrossRef
3.
Zurück zum Zitat Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef
4.
Zurück zum Zitat Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)CrossRef Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)CrossRef
5.
Zurück zum Zitat Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)CrossRef Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)CrossRef
6.
Zurück zum Zitat Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)CrossRef Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)CrossRef
7.
Zurück zum Zitat Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)CrossRef Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)CrossRef
8.
Zurück zum Zitat Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRef Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRef
9.
Zurück zum Zitat Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
10.
Zurück zum Zitat Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef
11.
Zurück zum Zitat Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)CrossRef Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)CrossRef
12.
Zurück zum Zitat Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRef
13.
Zurück zum Zitat Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef
14.
Zurück zum Zitat Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)CrossRef Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)CrossRef
15.
Zurück zum Zitat Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRef
16.
Zurück zum Zitat Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)CrossRef Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)CrossRef
17.
Zurück zum Zitat Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)CrossRef Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)CrossRef
18.
Zurück zum Zitat Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRef Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRef
19.
Zurück zum Zitat Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)CrossRef Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)CrossRef
20.
Zurück zum Zitat Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)CrossRef Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)CrossRef
21.
Zurück zum Zitat Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)CrossRef Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)CrossRef
22.
Zurück zum Zitat Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)CrossRef Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)CrossRef
23.
Zurück zum Zitat Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
24.
Zurück zum Zitat Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009) Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009)
25.
Zurück zum Zitat Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)CrossRef Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)CrossRef
26.
Zurück zum Zitat Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)CrossRef Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)CrossRef
27.
Zurück zum Zitat Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)CrossRef Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)CrossRef
28.
Zurück zum Zitat Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)CrossRef Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)CrossRef
29.
Zurück zum Zitat Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRef Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRef
30.
Zurück zum Zitat Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRef Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRef
31.
Zurück zum Zitat Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012) Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012)
32.
Zurück zum Zitat Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)CrossRef Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)CrossRef
33.
Zurück zum Zitat Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)CrossRef Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)CrossRef
34.
Zurück zum Zitat Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016) Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016)
35.
Zurück zum Zitat Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004) Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004)
Metadaten
Titel
UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response
verfasst von
L. Francioso
G. Malucelli
A. Fioravanti
C. De Pascali
M. A. Signore
M. C. Carotta
A. Bonanno
D. Duraccio
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-66802-4_40