Skip to main content
Erschienen in: Quantum Information Processing 9/2020

01.08.2020

Vacuum-based quantum random number generator using multi-mode coherent states

verfasst von: E. O. Samsonov, B. E. Pervushin, A. E. Ivanova, A. A. Santev, V. I. Egorov, S. M. Kynev, A. V. Gleim

Erschienen in: Quantum Information Processing | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an optical quantum random number generator based on vacuum fluctuation measurements that uses multi-mode coherent states generated by electro-optical phase modulation of an intense optical carrier. In this approach the weak coherent multi-mode state (or a vacuum state) interferes with the carrier, which acts as a local oscillator, on each side mode independently. The proposed setup can effectively compensate for any deviations between the two arms of a balanced detector by controlling the modulation index of the modulator. We perform a proof-of-principle experiment and demonstrate random number generation with a possibility of real-time randomness extraction at the rate of 400 Mbit/s. The proposed concept has a potential for randomness generation rates comparable to the widely employed vacuum-based quantum random number generators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ferrenberg, A.M., Landau, D., Wong, Y.J.: Monte Carlo simulations: hidden errors from “good” random number generators. Phys. Rev. Lett. 69(23), 3382 (1992)ADS Ferrenberg, A.M., Landau, D., Wong, Y.J.: Monte Carlo simulations: hidden errors from “good” random number generators. Phys. Rev. Lett. 69(23), 3382 (1992)ADS
2.
Zurück zum Zitat Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335 (1949)MATH Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335 (1949)MATH
3.
Zurück zum Zitat Gennaro, R.: Randomness in cryptography. IEEE Secur. Priv. 4(2), 64 (2006) Gennaro, R.: Randomness in cryptography. IEEE Secur. Priv. 4(2), 64 (2006)
4.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)ADSMATH Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)ADSMATH
5.
Zurück zum Zitat Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)ADS Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)ADS
6.
Zurück zum Zitat Nisan, N., Wigderson, A.: Hardness versus randomness. J. Comput. Syst. Sci. 49(2), 149 (1994)MATH Nisan, N., Wigderson, A.: Hardness versus randomness. J. Comput. Syst. Sci. 49(2), 149 (1994)MATH
7.
Zurück zum Zitat Johnston, D.: Random Number Generators-Principles and Practices: A Guide for Engineers and Programmers. A Guide for Engineers and Programmers (De Gruyter, Random Number Generators-Principles and Practices) (2018) Johnston, D.: Random Number Generators-Principles and Practices: A Guide for Engineers and Programmers. A Guide for Engineers and Programmers (De Gruyter, Random Number Generators-Principles and Practices) (2018)
8.
Zurück zum Zitat Haw, J.Y., Assad, S., Lance, A., Ng, N., Sharma, V., Lam, P.K., Symul, T.: Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 3(5), 054004 (2015)ADS Haw, J.Y., Assad, S., Lance, A., Ng, N., Sharma, V., Lam, P.K., Symul, T.: Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 3(5), 054004 (2015)ADS
9.
Zurück zum Zitat Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)MATH Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)MATH
10.
Zurück zum Zitat Kozubov, A., Gaidash, A., Miroshnichenko, G.: Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv preprint arXiv:1903.04371 (2019) Kozubov, A., Gaidash, A., Miroshnichenko, G.: Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv preprint arXiv:​1903.​04371 (2019)
11.
Zurück zum Zitat Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675 (2000)ADS Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675 (2000)ADS
12.
Zurück zum Zitat Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6(1), 011020 (2016) Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6(1), 011020 (2016)
13.
Zurück zum Zitat Sanguinetti, M.A., Lim, B., Houlmann, C.C.W., Zbinden, R.: Quantum random number generation for 1.25-GHz quantum key distribution systems. J. Light. Technol. 33(13), 2855 (2015) Sanguinetti, M.A., Lim, B., Houlmann, C.C.W., Zbinden, R.: Quantum random number generation for 1.25-GHz quantum key distribution systems. J. Light. Technol. 33(13), 2855 (2015)
14.
Zurück zum Zitat Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., et al.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021 (2010)ADS Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., et al.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021 (2010)ADS
15.
Zurück zum Zitat Xu, F., Shapiro, J.H., Wong, F.N.: Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica 3(11), 1266 (2016)ADS Xu, F., Shapiro, J.H., Wong, F.N.: Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica 3(11), 1266 (2016)ADS
16.
Zurück zum Zitat Guo, H., Tang, W., Liu, Y., Wei, W.: Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81(5), 051137 (2010)ADS Guo, H., Tang, W., Liu, Y., Wei, W.: Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81(5), 051137 (2010)ADS
17.
Zurück zum Zitat Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20(11), 12366 (2012)ADS Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20(11), 12366 (2012)ADS
18.
Zurück zum Zitat Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., Mitchell, M.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645 (2014)ADS Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., Mitchell, M.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645 (2014)ADS
19.
Zurück zum Zitat Shi, Y., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109(4), 041101 (2016)ADS Shi, Y., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109(4), 041101 (2016)ADS
20.
Zurück zum Zitat Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4(10), 711 (2010)ADS Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4(10), 711 (2010)ADS
21.
Zurück zum Zitat Zhu, Y., He, G., Zeng, G.: Unbiased quantum random number generation based on squeezed vacuum state. Int. J. Quantum Inf. 10(01), 1250012 (2012)MATH Zhu, Y., He, G., Zeng, G.: Unbiased quantum random number generation based on squeezed vacuum state. Int. J. Quantum Inf. 10(01), 1250012 (2012)MATH
22.
Zurück zum Zitat Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1(1), e8 (2019) Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1(1), e8 (2019)
23.
Zurück zum Zitat Xu, B., Chen, Z., Li, Z., Yang, J., Su, Q., Huang, W., Zhang, Y., Guo, H.: High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 4(2), 025013 (2019)ADS Xu, B., Chen, Z., Li, Z., Yang, J., Su, Q., Huang, W., Zhang, Y., Guo, H.: High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 4(2), 025013 (2019)ADS
24.
Zurück zum Zitat Zheng, Z., Zhang, Y., Huang, W., Yu, S., Guo, H.: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90(4), 043105 (2019)ADS Zheng, Z., Zhang, Y., Huang, W., Yu, S., Guo, H.: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90(4), 043105 (2019)ADS
25.
Zurück zum Zitat Avesani, M., Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 9(1), 1 (2018) Avesani, M., Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 9(1), 1 (2018)
26.
Zurück zum Zitat Huang, L., Zhou, H.: Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection. JOSA B 36(3), B130 (2019) Huang, L., Zhou, H.: Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection. JOSA B 36(3), B130 (2019)
27.
Zurück zum Zitat Guo, X., Cheng, C., Wu, M., Gao, Q., Li, P., Guo, Y.: Parallel real-time quantum random number generator. Opt. Lett. 44(22), 5566 (2019)ADS Guo, X., Cheng, C., Wu, M., Gao, Q., Li, P., Guo, Y.: Parallel real-time quantum random number generator. Opt. Lett. 44(22), 5566 (2019)ADS
28.
Zurück zum Zitat Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M.: Multiplexed quantum random number generation. Quantum 3, 141 (2019) Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M.: Multiplexed quantum random number generation. Quantum 3, 141 (2019)
29.
Zurück zum Zitat Raffaelli, F., Ferranti, G., Mahler, D.H., Sibson, P., Kennard, J.E., Santamato, A., Sinclair, G., Bonneau, D., Thompson, M.G., Matthews, J.C.: A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3(2), 025003 (2018)ADS Raffaelli, F., Ferranti, G., Mahler, D.H., Sibson, P., Kennard, J.E., Santamato, A., Sinclair, G., Bonneau, D., Thompson, M.G., Matthews, J.C.: A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3(2), 025003 (2018)ADS
30.
Zurück zum Zitat Merolla, J.M., Mazurenko, Y., Goedgebuer, J.P., Porte, H., Rhodes, W.T.: Phase-modulation transmission system for quantum cryptography. Opt. Lett. 24(2), 104 (1999)ADS Merolla, J.M., Mazurenko, Y., Goedgebuer, J.P., Porte, H., Rhodes, W.T.: Phase-modulation transmission system for quantum cryptography. Opt. Lett. 24(2), 104 (1999)ADS
31.
Zurück zum Zitat Gleim, A., Egorov, V., Nazarov, Y.V., Smirnov, S., Chistyakov, V., Bannik, O., Anisimov, A., Kynev, S., Ivanova, A., Collins, R., et al.: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 24(3), 2619 (2016)ADS Gleim, A., Egorov, V., Nazarov, Y.V., Smirnov, S., Chistyakov, V., Bannik, O., Anisimov, A., Kynev, S., Ivanova, A., Collins, R., et al.: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 24(3), 2619 (2016)ADS
32.
Zurück zum Zitat Miroshnichenko, G., Kozubov, A., Gaidash, A., Gleim, A., Horoshko, D.: Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt. Express 26(9), 11292 (2018)ADS Miroshnichenko, G., Kozubov, A., Gaidash, A., Gleim, A., Horoshko, D.: Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt. Express 26(9), 11292 (2018)ADS
33.
Zurück zum Zitat Kynev, S., Chistyakov, V., Smirnov, S., Volkova, K., Egorov, V., Gleim, A.: J. Phys. Conf. Ser., vol. 917 (2017) Kynev, S., Chistyakov, V., Smirnov, S., Volkova, K., Egorov, V., Gleim, A.: J. Phys. Conf. Ser., vol. 917 (2017)
34.
Zurück zum Zitat Chistiakov, V., Kozubov, A., Gaidash, A., Gleim, A., Miroshnichenko, G.: Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Opt. Express 27(25), 36551 (2019)ADS Chistiakov, V., Kozubov, A., Gaidash, A., Gleim, A., Miroshnichenko, G.: Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Opt. Express 27(25), 36551 (2019)ADS
35.
Zurück zum Zitat Samsonov, E., Goncharov, R., Gaidash, A., Kozubov, A., Egorov, V., Gleim, A.: Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Sci. Rep. 10(1), 10034 (2020)ADS Samsonov, E., Goncharov, R., Gaidash, A., Kozubov, A., Egorov, V., Gleim, A.: Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Sci. Rep. 10(1), 10034 (2020)ADS
36.
Zurück zum Zitat Mel’nik, K., Arslanov, N., Bannik, O., Gilyazov, L., Egorov, V., Gleim, A., Moiseev, S.: Using a heterodyne detection scheme in a subcarrier wave quantum communication system. Bull. Russ. Acad. Sci. Phys. 82(8), 1038 (2018) Mel’nik, K., Arslanov, N., Bannik, O., Gilyazov, L., Egorov, V., Gleim, A., Moiseev, S.: Using a heterodyne detection scheme in a subcarrier wave quantum communication system. Bull. Russ. Acad. Sci. Phys. 82(8), 1038 (2018)
37.
Zurück zum Zitat Guo, X., Liu, R., Li, P., Cheng, C., Wu, M., Guo, Y.: Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy 20(11), 819 (2018)ADS Guo, X., Liu, R., Li, P., Cheng, C., Wu, M., Guo, Y.: Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy 20(11), 819 (2018)ADS
39.
Zurück zum Zitat Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, Boozallen and Hamilton Inc., Mcleanva (2001) Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, Boozallen and Hamilton Inc., Mcleanva (2001)
40.
Zurück zum Zitat Varshalovich, D., Moskalev, A.: Khersonski, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988) Varshalovich, D., Moskalev, A.: Khersonski, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)
41.
Zurück zum Zitat Miroshnichenko, G.P., Kiselev, A.D., Trifanov, A.I., Gleim, A.V.: Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. JOSA B 34(6), 1177 (2017)ADS Miroshnichenko, G.P., Kiselev, A.D., Trifanov, A.I., Gleim, A.V.: Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. JOSA B 34(6), 1177 (2017)ADS
42.
Zurück zum Zitat Fips, P.: Advanced Encryption Standard (AES). National Institute of Standards and Technology, Gaithersburg (2001) Fips, P.: Advanced Encryption Standard (AES). National Institute of Standards and Technology, Gaithersburg (2001)
43.
Zurück zum Zitat Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 5524 (2011)MathSciNetMATH Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 5524 (2011)MathSciNetMATH
Metadaten
Titel
Vacuum-based quantum random number generator using multi-mode coherent states
verfasst von
E. O. Samsonov
B. E. Pervushin
A. E. Ivanova
A. A. Santev
V. I. Egorov
S. M. Kynev
A. V. Gleim
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02813-3

Weitere Artikel der Ausgabe 9/2020

Quantum Information Processing 9/2020 Zur Ausgabe

Neuer Inhalt