Skip to main content

2020 | OriginalPaper | Buchkapitel

Validation Problems in Computational Modelling of Natural Convection

verfasst von : Victoria Timchenko, John A. Reizes

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Problems of validating computational models for naturally convective flows are discussed. It is shown that even in the case of laminar flow when all property variations are included in simulations, a good agreement with experimental data can be problematic due to inaccuracy in boundary conditions. For turbulent flows, the validation becomes even more challenging as the difference between experimental and numerical results could be the effect of an inadequate turbulence or subgrid model or the use of inappropriate boundary conditions. As a result, the better agreement with experimental data might be obtained by “improving” the turbulence or subgrid model, or by obtaining “more accurate” boundary conditions, or a combination of the two. This issue is explored using the example of LES in simulating buoyancy-driven flow in a tall rectangular cavity. The challenge of unknown boundary conditions has also been explored for a reduced laboratory model of an open-ended channel heated from one side. In this case, in order to obtain agreement between the numerical and the experimental data, the disturbances needed to be introduced at the inlet of the channel. By extending a computational domain to include the laboratory it was shown that the large structures meandered around the laboratory and disrupted the flow in the channel. Similar large disturbances were also detected experimentally. Therefore, it is shown that for a reduced model only tuning is possible and validation in a classical sense cannot be achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Spalding, D. B. (1981). A general purpose computer program for multi-dimensional one-and two-phase flow. Mathematics and computers in simulation, 23(3), 267–276.CrossRef Spalding, D. B. (1981). A general purpose computer program for multi-dimensional one-and two-phase flow. Mathematics and computers in simulation, 23(3), 267–276.CrossRef
2.
Zurück zum Zitat Oberkampf, W. L., & Trucano, T. G. (2007). Verification and validation benchmarks. 2007: Albuquerque, New Mexico 87185 and Livermore, California 94550. Oberkampf, W. L., & Trucano, T. G. (2007). Verification and validation benchmarks. 2007: Albuquerque, New Mexico 87185 and Livermore, California 94550.
3.
Zurück zum Zitat de Vahl Davis, G. (1983). Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249–264.CrossRef de Vahl Davis, G. (1983). Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249–264.CrossRef
4.
Zurück zum Zitat Le Quéré, P., et al. (2005). Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 1. Reference solutions. ESAIM: Mathematical Modelling and Numerical Analysis, 39(3), 609–616.CrossRef Le Quéré, P., et al. (2005). Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 1. Reference solutions. ESAIM: Mathematical Modelling and Numerical Analysis, 39(3), 609–616.CrossRef
5.
Zurück zum Zitat Nicolas, X., et al. (2011). Benchmark solution for a three-dimensional mixed-convection flow, part 1: Reference solutions. Numerical Heat Transfer, Part B: Fundamentals, 60(5), 325–345.CrossRef Nicolas, X., et al. (2011). Benchmark solution for a three-dimensional mixed-convection flow, part 1: Reference solutions. Numerical Heat Transfer, Part B: Fundamentals, 60(5), 325–345.CrossRef
6.
Zurück zum Zitat Nicolas, X., et al. (2011). Benchmark solution for a three-dimensional mixed-convection flow, part 2: Analysis of richardson extrapolation in the presence of a singularity. Numerical Heat Transfer, Part B: Fundamentals, 60(5), 346–369.CrossRef Nicolas, X., et al. (2011). Benchmark solution for a three-dimensional mixed-convection flow, part 2: Analysis of richardson extrapolation in the presence of a singularity. Numerical Heat Transfer, Part B: Fundamentals, 60(5), 346–369.CrossRef
7.
Zurück zum Zitat Abanto, J., et al. (2005). Verification of some commercial CFD codes on atypical CFD problems. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Abanto, J., et al. (2005). Verification of some commercial CFD codes on atypical CFD problems. In 43rd AIAA Aerospace Sciences Meeting and Exhibit.
8.
Zurück zum Zitat Roache, P. J. (1998). Fundamentals of computational fluid dynamics (Vol. 2). NM: Hermosa Publishers Albuquerque. Roache, P. J. (1998). Fundamentals of computational fluid dynamics (Vol. 2). NM: Hermosa Publishers Albuquerque.
9.
Zurück zum Zitat Kowalewski, T. A. (2011). Validation problems in computational fluid mechanics. Computer Assisted Mechanics and Engineering Sciences, 18(1/2), 39–52.MathSciNet Kowalewski, T. A. (2011). Validation problems in computational fluid mechanics. Computer Assisted Mechanics and Engineering Sciences, 18(1/2), 39–52.MathSciNet
10.
Zurück zum Zitat Leonardi, E., et al. (1994). Effects of finite wall conductivity on flow structures in natural convection. International journal of Heat transfer, 1999(4), 1–6. Leonardi, E., et al. (1994). Effects of finite wall conductivity on flow structures in natural convection. International journal of Heat transfer, 1999(4), 1–6.
11.
Zurück zum Zitat Timchenko, V. (2012). Eddie Leonardi Memorial Lecture: “Natural Convection From Earth to Space”. Journal of Heat Transfer, 134(3), 031014-undefined. Timchenko, V. (2012). Eddie Leonardi Memorial Lecture: “Natural Convection From Earth to Space”. Journal of Heat Transfer, 134(3), 031014-undefined.
12.
Zurück zum Zitat Leonardi, E., & Reizes, J. (1981). Convective flows in closed cavities with variable fluid properties. Numerical Methods in Heat Transfer, 387–412. Leonardi, E., & Reizes, J. (1981). Convective flows in closed cavities with variable fluid properties. Numerical Methods in Heat Transfer, 387–412.
13.
Zurück zum Zitat Leonardi, E. (1984). A numerical study of the effects of variable properties on natural convection. The University of New South Wales. Leonardi, E. (1984). A numerical study of the effects of variable properties on natural convection. The University of New South Wales.
14.
Zurück zum Zitat Leonardi, E., & Reizes, J. (1979). Numerical convection in compressible fluids with variable properties. In Lewis, R. W., & Morgan, K. (Eds.) Numerical Methods in Thermal Problems. Pineridge Press, Swansea, United Kingdom, pp. 297–306 Leonardi, E., & Reizes, J. (1979). Numerical convection in compressible fluids with variable properties. In Lewis, R. W., & Morgan, K. (Eds.) Numerical Methods in Thermal Problems. Pineridge Press, Swansea, United Kingdom, pp. 297–306
15.
Zurück zum Zitat Leonardi, E., & Reizes, J. Natural convection in inclined cavities filled with a compressible fluid with variable properties: A numerical study. In 7th Australasian Conference on Hydraulics and Fluid Mechanics 1980: Preprints of Papers. 1980. Institution of Engineers, Australia. Leonardi, E., & Reizes, J. Natural convection in inclined cavities filled with a compressible fluid with variable properties: A numerical study. In 7th Australasian Conference on Hydraulics and Fluid Mechanics 1980: Preprints of Papers. 1980. Institution of Engineers, Australia.
16.
Zurück zum Zitat Davis, G. D. V. (1986). Private Communication, The University of New South Wales. Davis, G. D. V. (1986). Private Communication, The University of New South Wales.
17.
Zurück zum Zitat Reizes, J. A., Leonardi, E., & Davis, G. D. V. (1985). Natural convection near the density extremum of water. In Fourth International Conference on Numerical Methods in Laminar and Turbulent Flow. Pineridge Press, Swansea, UK. Reizes, J. A., Leonardi, E., & Davis, G. D. V. (1985). Natural convection near the density extremum of water. In Fourth International Conference on Numerical Methods in Laminar and Turbulent Flow. Pineridge Press, Swansea, UK.
18.
Zurück zum Zitat Morrison, G. L., & Tran, V. Q. (1978). Laminar flow structure in vertical free convective cavities. International Journal of Heat and Mass Transfer, 21(2), 203–213.CrossRef Morrison, G. L., & Tran, V. Q. (1978). Laminar flow structure in vertical free convective cavities. International Journal of Heat and Mass Transfer, 21(2), 203–213.CrossRef
19.
Zurück zum Zitat Chenoweth, D. R., & Paolucci, S. (1986). Natural convection in an enclosed vertical air layer with large horizontal temperature differences. Journal of Fluid Mechanics, 169, 173–210.CrossRef Chenoweth, D. R., & Paolucci, S. (1986). Natural convection in an enclosed vertical air layer with large horizontal temperature differences. Journal of Fluid Mechanics, 169, 173–210.CrossRef
20.
Zurück zum Zitat Cheesewright, R., King, K. J., & Ziai, S. (1986). Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. In ASME Winter Annual Meeting, HTD-60, Anaheim. Cheesewright, R., King, K. J., & Ziai, S. (1986). Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. In ASME Winter Annual Meeting, HTD-60, Anaheim.
21.
Zurück zum Zitat King, K. J. (1989). Turbulent natural convection in rectangular air cavities. Queen Mary College, University of London, London. King, K. J. (1989). Turbulent natural convection in rectangular air cavities. Queen Mary College, University of London, London.
22.
Zurück zum Zitat Lau, G., et al. (2011). Large-eddy simulation of turbulent natural convection in vertical parallel-plate channels. Numerical Heat Transfer, Part B: Fundamentals, 59(4), 259–287.CrossRef Lau, G., et al. (2011). Large-eddy simulation of turbulent natural convection in vertical parallel-plate channels. Numerical Heat Transfer, Part B: Fundamentals, 59(4), 259–287.CrossRef
23.
Zurück zum Zitat Sutherland, W., LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893. 36(223): p. 507–531CrossRef Sutherland, W., LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893. 36(223): p. 507–531CrossRef
24.
Zurück zum Zitat Vreman, A.W., An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids (1994-present), 2004. 16(10): p. 3670–3681CrossRef Vreman, A.W., An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids (1994-present), 2004. 16(10): p. 3670–3681CrossRef
25.
Zurück zum Zitat Barhaghi, D. G., Davidson, L., & Karlsson, R. (2006). Large-eddy simulation of natural convection boundary layer on a vertical cylinder. International Journal of Heat and Fluid Flow, 27(5), 811–820.CrossRef Barhaghi, D. G., Davidson, L., & Karlsson, R. (2006). Large-eddy simulation of natural convection boundary layer on a vertical cylinder. International Journal of Heat and Fluid Flow, 27(5), 811–820.CrossRef
26.
Zurück zum Zitat Park, N., et al. (2006). A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Physics of Fluids, 18(12), 125109.CrossRef Park, N., et al. (2006). A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Physics of Fluids, 18(12), 125109.CrossRef
27.
Zurück zum Zitat You, D. and P. Moin, A dynamic global-coefficient subgrid-scale model for compressible turbulence in complex geometries. Center for Turbulence Research Annual Research Briefs, 2008: p. 189–196 You, D. and P. Moin, A dynamic global-coefficient subgrid-scale model for compressible turbulence in complex geometries. Center for Turbulence Research Annual Research Briefs, 2008: p. 189–196
28.
Zurück zum Zitat Lau, G. E., et al. (2012). Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity. Physics of Fluids, 24, 094105.CrossRef Lau, G. E., et al. (2012). Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity. Physics of Fluids, 24, 094105.CrossRef
29.
Zurück zum Zitat Timchenko, V., et al. Is comparison with experimental data a reasonable method of validating computational models? in Journal of Physics: Conference Series. 2016. IOP Publishing Timchenko, V., et al. Is comparison with experimental data a reasonable method of validating computational models? in Journal of Physics: Conference Series. 2016. IOP Publishing
30.
Zurück zum Zitat Miyamoto, M., et al. (1986). Turbulent free convection heat transfer from vertical parallel plates. in Proceedings of the eighth international heat transfer conference, Volume 4. 1986 Miyamoto, M., et al. (1986). Turbulent free convection heat transfer from vertical parallel plates. in Proceedings of the eighth international heat transfer conference, Volume 4. 1986
31.
Zurück zum Zitat Lau, G., et al. (2012). Large-eddy simulation of natural convection in an asymmetrically-heated vertical parallel-plate channel: Assessment of subgrid-scale models. Computers & Fluids, 59, 101–116.MathSciNetCrossRef Lau, G., et al. (2012). Large-eddy simulation of natural convection in an asymmetrically-heated vertical parallel-plate channel: Assessment of subgrid-scale models. Computers & Fluids, 59, 101–116.MathSciNetCrossRef
32.
Zurück zum Zitat Lau, G., et al. (2012). Numerical investigation of passive cooling in open vertical channels. Applied Thermal Engineering, 39, 121–131.CrossRef Lau, G., et al. (2012). Numerical investigation of passive cooling in open vertical channels. Applied Thermal Engineering, 39, 121–131.CrossRef
33.
Zurück zum Zitat Ménézo, C., M. Fossa, and E. Leonardi. An experimental investigation of free cooling by natural convection of vertical surfaces for building integrated photovoltaic (bipv) applications. in Thermal Issues in Emerging Technologies: Theory and Application, 2007. THETA 2007. International Conference on. 2007. IEEE Ménézo, C., M. Fossa, and E. Leonardi. An experimental investigation of free cooling by natural convection of vertical surfaces for building integrated photovoltaic (bipv) applications. in Thermal Issues in Emerging Technologies: Theory and Application, 2007. THETA 2007. International Conference on. 2007. IEEE
34.
Zurück zum Zitat Vareilles, J., Étude des transferts de chaleur dans un canal vertical differentiellement chauffé: application aux enveloppes photovoltaïques thermiques. 2007 Vareilles, J., Étude des transferts de chaleur dans un canal vertical differentiellement chauffé: application aux enveloppes photovoltaïques thermiques. 2007
35.
Zurück zum Zitat Fossa, M., Mènèzo, C., & Leonardi, E. (2008). Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Experimental Thermal and Fluid Science, 32(4), 980–990.CrossRef Fossa, M., Mènèzo, C., & Leonardi, E. (2008). Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Experimental Thermal and Fluid Science, 32(4), 980–990.CrossRef
36.
Zurück zum Zitat Giroux-Julien, S., et al. (2009). Natural convection in a nonuniformly heated channel with application to photovoltaic facades. Computational Thermal Sciences, 1(3), 231–258.CrossRef Giroux-Julien, S., et al. (2009). Natural convection in a nonuniformly heated channel with application to photovoltaic facades. Computational Thermal Sciences, 1(3), 231–258.CrossRef
37.
Zurück zum Zitat Sanvicente, E., et al. (2013). Transitional natural convection flow and heat transfer in an open channel. International Journal of Thermal Sciences, 63, 87–104.CrossRef Sanvicente, E., et al. (2013). Transitional natural convection flow and heat transfer in an open channel. International Journal of Thermal Sciences, 63, 87–104.CrossRef
38.
Zurück zum Zitat Saadon, S., et al. (2016). Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope. Renewable Energy, 87, 517–531.CrossRef Saadon, S., et al. (2016). Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope. Renewable Energy, 87, 517–531.CrossRef
39.
Zurück zum Zitat Lau, G.E., et al., Numerical and experimental investigation of unsteady natural convection in a vertical open-ended channel. Computational Thermal Sciences: An International Journal, 2012. 4(5) Lau, G.E., et al., Numerical and experimental investigation of unsteady natural convection in a vertical open-ended channel. Computational Thermal Sciences: An International Journal, 2012. 4(5)
40.
Zurück zum Zitat Fedorov, A. G., & Viskanta, R. (1997). Turbulent natural convection heat transfer in an asymmetrically heated, vertical parallel-plate channel. International Journal of Heat and Mass Transfer, 40(16), 3849–3860.CrossRef Fedorov, A. G., & Viskanta, R. (1997). Turbulent natural convection heat transfer in an asymmetrically heated, vertical parallel-plate channel. International Journal of Heat and Mass Transfer, 40(16), 3849–3860.CrossRef
41.
Zurück zum Zitat Daverat, C., et al. (2013). Experimental investigation of turbulent natural convection in a vertical water channel with symmetric heating: Flow and heat transfer. Experimental Thermal and Fluid Science, 44, 182–193.CrossRef Daverat, C., et al. (2013). Experimental investigation of turbulent natural convection in a vertical water channel with symmetric heating: Flow and heat transfer. Experimental Thermal and Fluid Science, 44, 182–193.CrossRef
42.
Zurück zum Zitat Thebault, M., Coherent structures and impact of the external thermal stratification in a transitional natural convection vertical channel. 2018, University of Lyon and UNSW Sydney Thebault, M., Coherent structures and impact of the external thermal stratification in a transitional natural convection vertical channel. 2018, University of Lyon and UNSW Sydney
43.
Zurück zum Zitat Brady, P., An investigation of free surface hydraulic structures using large eddy simulation and computational fluid dynamics. 2011 Brady, P., An investigation of free surface hydraulic structures using large eddy simulation and computational fluid dynamics. 2011
44.
Zurück zum Zitat Katoh, Y., et al., Turbulent free convection heat transfer from vertical parallel plates: effect of entrance bell-mouth shape. JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, 1991. 34(4): p. 496–501 Katoh, Y., et al., Turbulent free convection heat transfer from vertical parallel plates: effect of entrance bell-mouth shape. JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, 1991. 34(4): p. 496–501
45.
Zurück zum Zitat Thebault, M., et al. (2018). Impact of external temperature distribution on the convective mass flow rate in a vertical channel–A theoretical and experimental study. International Journal of Heat and Mass Transfer, 121, 1264–1272.CrossRef Thebault, M., et al. (2018). Impact of external temperature distribution on the convective mass flow rate in a vertical channel–A theoretical and experimental study. International Journal of Heat and Mass Transfer, 121, 1264–1272.CrossRef
46.
Zurück zum Zitat Gaillard, L., et al. (2014). Experimental study of thermal response of PV modules integrated into naturally-ventilated double skin facades. Energy Procedia, 48, 1254–1261.CrossRef Gaillard, L., et al. (2014). Experimental study of thermal response of PV modules integrated into naturally-ventilated double skin facades. Energy Procedia, 48, 1254–1261.CrossRef
Metadaten
Titel
Validation Problems in Computational Modelling of Natural Convection
verfasst von
Victoria Timchenko
John A. Reizes
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.