Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2019

04.12.2018 | Original Article

Valorization of waste Indigofera tinctoria L. biomass generated from indigo dye extraction process—potential towards biofuels and compost

verfasst von: Lopa Pattanaik, Satya Narayan Naik, P. Hariprasad

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current study focuses on the valorization potential of Indigofera tinctoria L. waste biomass recovered from the indigo dye production process for biofuel and compost. In order to compare the potential of after dye extracted biomass (ADB) with before dye extracted biomass (BDB), different physical (proximate analysis, calorific value, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD)), chemical (ultimate analysis, inorganic elemental analysis, Fourier transform infrared spectroscopy (FTIR)), and compositional characterization (cellulose, hemicellulose, lignin, and extractive content) were performed. With C/N ratio of 19.66 and high mineral contents (P = 1513.47 and K = 5672.63 ppm), ADB showed favorable potential for compost. Additionally, the ultimate composition (C = 44.23%, H = 6.62%, N = 2.25%, and O = 37.94%) and lignocellulosic composition (cellulose = 41.15%, hemicellulose = 28.9%) of ADB indicated comparable methane (498.94 L/kg VS) and ethanol (281.9 L/Mg) potential. Considering the overall biomass potential, an integrated approach has been suggested to utilize ADB for biofuels (biogas and bioethanol) and compost production. This approach may enhance the eco-sustainability by substituting the current energy and fertilizer need in Indigofera biomass cultivation and indigo dye production processes with a predicted energy equivalent of 3709.68 MJ (from biogas) or 1131.56 MJ (from bioethanol) per 240 kg dry weight of ADB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342CrossRef Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342CrossRef
2.
Zurück zum Zitat Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRef Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRef
3.
Zurück zum Zitat Geissler S, Klug S, Bechthold T, Mussak R (2005) Marketing products from renewable resources: the example of naturally dyed textiles produced by industry. Greentech Newsl 8:2–3 Geissler S, Klug S, Bechthold T, Mussak R (2005) Marketing products from renewable resources: the example of naturally dyed textiles produced by industry. Greentech Newsl 8:2–3
4.
Zurück zum Zitat Shahid M, Mohammad F et al (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331CrossRef Shahid M, Mohammad F et al (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331CrossRef
5.
Zurück zum Zitat Baliarsingh S, Panda AK, Jena J, Das T, Das NB (2012) Exploring sustainable technique on natural dye extraction from native plants for textile: identification of colourants, colourimetric analysis of dyed yarns and their antimicrobial evaluation. J Clean Prod 37:257–264CrossRef Baliarsingh S, Panda AK, Jena J, Das T, Das NB (2012) Exploring sustainable technique on natural dye extraction from native plants for textile: identification of colourants, colourimetric analysis of dyed yarns and their antimicrobial evaluation. J Clean Prod 37:257–264CrossRef
6.
Zurück zum Zitat Shahid M, Mohammad F et al (2013) Perspectives for natural product based agents derived from industrial plants in textile applications-a review. J Clean Prod 57:2–18CrossRef Shahid M, Mohammad F et al (2013) Perspectives for natural product based agents derived from industrial plants in textile applications-a review. J Clean Prod 57:2–18CrossRef
7.
Zurück zum Zitat Teanglum A, Teanglum S, Saithong A (2012) Selection of indigo plant varieties and other plants that yield indigo dye. Procedia Eng 32:184–190CrossRef Teanglum A, Teanglum S, Saithong A (2012) Selection of indigo plant varieties and other plants that yield indigo dye. Procedia Eng 32:184–190CrossRef
8.
Zurück zum Zitat Linhares M, Rebelo SLH, Simões MMQ, Silva AMS, Neves MGPMS, Cavaleiro JAS, Freire C (2014) Biomimetic oxidation of indole by Mn (III) porphyrins. Appl Catal A Gen 470:427–433CrossRef Linhares M, Rebelo SLH, Simões MMQ, Silva AMS, Neves MGPMS, Cavaleiro JAS, Freire C (2014) Biomimetic oxidation of indole by Mn (III) porphyrins. Appl Catal A Gen 470:427–433CrossRef
9.
Zurück zum Zitat Rebelo SLH, Linhares M, Simões MMQ, Silva AMS, Neves MGPMS, Cavaleiro JAS, Freire C (2014) Indigo dye production by enzymatic mimicking based on an iron (III) porphyrin. J Catal 315:33–40CrossRef Rebelo SLH, Linhares M, Simões MMQ, Silva AMS, Neves MGPMS, Cavaleiro JAS, Freire C (2014) Indigo dye production by enzymatic mimicking based on an iron (III) porphyrin. J Catal 315:33–40CrossRef
10.
Zurück zum Zitat Pathak H, Madamwar D (2010) Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Appl Biochem Biotechnol 160:1616–1626CrossRef Pathak H, Madamwar D (2010) Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Appl Biochem Biotechnol 160:1616–1626CrossRef
11.
Zurück zum Zitat Bechtold T, Turcanu A, Geissler S, Ganglberger E (2002) Process balance and product quality in the production of natural indigo from Polygonum tinctorium Ait. Applying low-technology methods. Bioresour Technol 81:171–177CrossRef Bechtold T, Turcanu A, Geissler S, Ganglberger E (2002) Process balance and product quality in the production of natural indigo from Polygonum tinctorium Ait. Applying low-technology methods. Bioresour Technol 81:171–177CrossRef
12.
Zurück zum Zitat Schrott W (2001) Denim wieder im Blickpunkt der Textilindustrie. Melliand Textilber 82:331–337 Schrott W (2001) Denim wieder im Blickpunkt der Textilindustrie. Melliand Textilber 82:331–337
13.
Zurück zum Zitat Tian C, Tian R, Zhou Y et al (2013) Decolorization of indigo dye and indigo dye-containing textile effluent by Ganoderma weberianum. Afr J Microbiol Res 7:941–947 Tian C, Tian R, Zhou Y et al (2013) Decolorization of indigo dye and indigo dye-containing textile effluent by Ganoderma weberianum. Afr J Microbiol Res 7:941–947
14.
Zurück zum Zitat Gulrajani ML (2001) Present status of natural dyes. Indian J Fibre Text Res 26:191–201 Gulrajani ML (2001) Present status of natural dyes. Indian J Fibre Text Res 26:191–201
15.
Zurück zum Zitat Angelini LG, Campeol E, Tozzi S, Gilbert KG, Cooke DT, John P (2003) A new HPLC-ELSD method to quantify Indican in Polygonum tinctorium L. and to evaluate β-glucosidase hydrolysis of Indican for indigo production. Biotechnol Prog 19:1792–1797CrossRef Angelini LG, Campeol E, Tozzi S, Gilbert KG, Cooke DT, John P (2003) A new HPLC-ELSD method to quantify Indican in Polygonum tinctorium L. and to evaluate β-glucosidase hydrolysis of Indican for indigo production. Biotechnol Prog 19:1792–1797CrossRef
16.
Zurück zum Zitat Bechtold T, Mussak R (2009) Handbook of natural colorants. John Wiley & Sons, Hoboken Bechtold T, Mussak R (2009) Handbook of natural colorants. John Wiley & Sons, Hoboken
17.
Zurück zum Zitat Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRef Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRef
18.
Zurück zum Zitat Srinivasan S, Wankhar W, Rathinasamy S, Rajan R (2016) Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria Linn (Fabaceae). J Pharm Anal 6:125–131CrossRef Srinivasan S, Wankhar W, Rathinasamy S, Rajan R (2016) Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria Linn (Fabaceae). J Pharm Anal 6:125–131CrossRef
19.
Zurück zum Zitat Midmore DJ, Ladha JK, Olk DC et al (2000) Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron J 92:253–260CrossRef Midmore DJ, Ladha JK, Olk DC et al (2000) Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron J 92:253–260CrossRef
21.
Zurück zum Zitat E1755–01 A, Standard A (2011) Standard Test Method for Ash in Biomass. ASTM Int, West Conshohocken E1755–01 A, Standard A (2011) Standard Test Method for Ash in Biomass. ASTM Int, West Conshohocken
22.
Zurück zum Zitat Standard A (2011) D3175–11. ASTM Int, West Conshohocken Standard A (2011) D3175–11. ASTM Int, West Conshohocken
23.
Zurück zum Zitat Sohni S, Norulaini NAN, Hashim R, Khan SB, Fadhullah W, Mohd Omar AK (2018) Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources. Ind Crop Prod 111:642–650CrossRef Sohni S, Norulaini NAN, Hashim R, Khan SB, Fadhullah W, Mohd Omar AK (2018) Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources. Ind Crop Prod 111:642–650CrossRef
24.
Zurück zum Zitat Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132CrossRef Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132CrossRef
25.
Zurück zum Zitat Añón JAR, López FF, Castiñeiras JP, Ledo JP, Regueira LN (1995) Calorific values and flammability for forest wastes during the seasons of the year. Bioresour Technol 52:269–274CrossRef Añón JAR, López FF, Castiñeiras JP, Ledo JP, Regueira LN (1995) Calorific values and flammability for forest wastes during the seasons of the year. Bioresour Technol 52:269–274CrossRef
26.
Zurück zum Zitat Iryani DA, Kumagai S, Nonaka M, Sasaki K, Hirajima T (2017) Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valori 8:1941–1951CrossRef Iryani DA, Kumagai S, Nonaka M, Sasaki K, Hirajima T (2017) Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valori 8:1941–1951CrossRef
27.
Zurück zum Zitat Waghmare PR, Kadam AA, Saratale GD, Govindwar SP (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141CrossRef Waghmare PR, Kadam AA, Saratale GD, Govindwar SP (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141CrossRef
28.
Zurück zum Zitat Sluiter A, Hames B, Hyman D et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl Renew Energy Lab Golden, CO, NREL Tech Rep No NREL/TP-510-42621 1–6 Sluiter A, Hames B, Hyman D et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl Renew Energy Lab Golden, CO, NREL Tech Rep No NREL/TP-510-42621 1–6
29.
Zurück zum Zitat Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421CrossRef Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421CrossRef
30.
Zurück zum Zitat Singh YD, Mahanta P, Bora U (2017) Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy 103:490–500CrossRef Singh YD, Mahanta P, Bora U (2017) Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy 103:490–500CrossRef
31.
Zurück zum Zitat Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ Sci 4:4587–4595CrossRef Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ Sci 4:4587–4595CrossRef
32.
Zurück zum Zitat Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416CrossRef Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416CrossRef
33.
Zurück zum Zitat Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91:221–230CrossRef Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91:221–230CrossRef
34.
Zurück zum Zitat Badger P (2002) Ethanol from cellulose: a general review. Trends New Crops New Uses 1:17–21 Badger P (2002) Ethanol from cellulose: a general review. Trends New Crops New Uses 1:17–21
35.
Zurück zum Zitat Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337CrossRef Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337CrossRef
36.
Zurück zum Zitat Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289CrossRef Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289CrossRef
37.
Zurück zum Zitat García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258CrossRef García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258CrossRef
38.
Zurück zum Zitat Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322CrossRef Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322CrossRef
39.
Zurück zum Zitat Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio 3:117–129CrossRef Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio 3:117–129CrossRef
40.
Zurück zum Zitat Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476CrossRef Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476CrossRef
41.
Zurück zum Zitat Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRef Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRef
42.
Zurück zum Zitat Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507CrossRef Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507CrossRef
43.
Zurück zum Zitat Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33CrossRef Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33CrossRef
44.
Zurück zum Zitat Romero E, Quirantes M, Nogales R (2017) Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208:1–9CrossRef Romero E, Quirantes M, Nogales R (2017) Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208:1–9CrossRef
45.
Zurück zum Zitat Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of north American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677CrossRef Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of north American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677CrossRef
46.
Zurück zum Zitat Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy 35:1624–1631CrossRef Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy 35:1624–1631CrossRef
47.
Zurück zum Zitat Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ (2009) Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric Eng Int CIGR J 9:1–25 Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ (2009) Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric Eng Int CIGR J 9:1–25
48.
Zurück zum Zitat Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82:685–696CrossRef Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82:685–696CrossRef
49.
Zurück zum Zitat Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241CrossRef Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241CrossRef
50.
Zurück zum Zitat Verma SM, Suresh KB (2002) Phytochemical investivations of Indigofera tinctoria Linn leaves. Anc Sci Life 21:235 Verma SM, Suresh KB (2002) Phytochemical investivations of Indigofera tinctoria Linn leaves. Anc Sci Life 21:235
51.
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
52.
Zurück zum Zitat Wong JWC, Mak KF, Chan NW, Lam A, Fang M, Zhou LX, Wu QT, Liao XD (2001) Co-composting of soybean residues and leaves in Hong Kong. Bioresour Technol 76:99–106CrossRef Wong JWC, Mak KF, Chan NW, Lam A, Fang M, Zhou LX, Wu QT, Liao XD (2001) Co-composting of soybean residues and leaves in Hong Kong. Bioresour Technol 76:99–106CrossRef
53.
Zurück zum Zitat Huang GF, Fang M, Wu QT, Zhou LX, Liao XD, Wong JWC (2001) Co-composting of pig manure with leaves. Environ Technol 22:1203–1212CrossRef Huang GF, Fang M, Wu QT, Zhou LX, Liao XD, Wong JWC (2001) Co-composting of pig manure with leaves. Environ Technol 22:1203–1212CrossRef
54.
Zurück zum Zitat Qian X, Shen G, Wang Z, Guo C, Liu Y, Lei Z, Zhang Z (2014) Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system. Waste Manag 34:530–535CrossRef Qian X, Shen G, Wang Z, Guo C, Liu Y, Lei Z, Zhang Z (2014) Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system. Waste Manag 34:530–535CrossRef
55.
Zurück zum Zitat Fageria NK (2007) Green manuring in crop production. J Plant Nutr 30:691–719CrossRef Fageria NK (2007) Green manuring in crop production. J Plant Nutr 30:691–719CrossRef
56.
Zurück zum Zitat Klimiuk E, Pokój T, Budzyński W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101:9527–9535CrossRef Klimiuk E, Pokój T, Budzyński W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101:9527–9535CrossRef
57.
Zurück zum Zitat Slepetiene A, Slepetys J, Tilvikiene V et al (2016) Evaluation of chemical composition and biogas production from legumes and perennial grasses in anaerobic digestion using the oxitop system. Fresenius Environ Bull 25:1343–1348 Slepetiene A, Slepetys J, Tilvikiene V et al (2016) Evaluation of chemical composition and biogas production from legumes and perennial grasses in anaerobic digestion using the oxitop system. Fresenius Environ Bull 25:1343–1348
58.
Zurück zum Zitat Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774CrossRef Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774CrossRef
59.
Zurück zum Zitat Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964CrossRef Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964CrossRef
60.
Zurück zum Zitat Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44:540–545CrossRef Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44:540–545CrossRef
61.
Zurück zum Zitat Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501CrossRef Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501CrossRef
62.
Zurück zum Zitat Papacz W (2011) Biogas as vehicle fuel. J Kones 18:403–410 Papacz W (2011) Biogas as vehicle fuel. J Kones 18:403–410
63.
Zurück zum Zitat Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107CrossRef Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107CrossRef
64.
Zurück zum Zitat Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol-diesel fuel blends—a review. Bioresour Technol 96:277–285CrossRef Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol-diesel fuel blends—a review. Bioresour Technol 96:277–285CrossRef
65.
Zurück zum Zitat Munsin R, Laoonual Y, Jugjai S, Imai Y (2013) An experimental study on performance and emissions of a small SI engine generator set fuelled by hydrous ethanol with high water contents up to 40%. Fuel 106:586–592CrossRef Munsin R, Laoonual Y, Jugjai S, Imai Y (2013) An experimental study on performance and emissions of a small SI engine generator set fuelled by hydrous ethanol with high water contents up to 40%. Fuel 106:586–592CrossRef
66.
Zurück zum Zitat de Oliveira A, de Morais AM, Valente OS, Sodré JR (2015) Combustion characteristics, performance and emissions from a diesel power generator fuelled by B7-ethanol blends. Fuel Process Technol 139:67–72CrossRef de Oliveira A, de Morais AM, Valente OS, Sodré JR (2015) Combustion characteristics, performance and emissions from a diesel power generator fuelled by B7-ethanol blends. Fuel Process Technol 139:67–72CrossRef
Metadaten
Titel
Valorization of waste Indigofera tinctoria L. biomass generated from indigo dye extraction process—potential towards biofuels and compost
verfasst von
Lopa Pattanaik
Satya Narayan Naik
P. Hariprasad
Publikationsdatum
04.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2019
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0354-2

Weitere Artikel der Ausgabe 2/2019

Biomass Conversion and Biorefinery 2/2019 Zur Ausgabe