Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Vanadium Pentoxide for Li-Ion Storage

verfasst von : Dr. Dongliang Chao

Erschienen in: Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy is the lifeblood of modern society and plays an important role in the advancement of human civilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3, 649–653 (2009)CrossRef H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3, 649–653 (2009)CrossRef
2.
Zurück zum Zitat A. Pan, D. Liu, X. Zhou, B.B. Garcia, S. Liang, J. Liu, G. Cao, Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. J. Power Sources 195, 3893–3899 (2010)CrossRef A. Pan, D. Liu, X. Zhou, B.B. Garcia, S. Liang, J. Liu, G. Cao, Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. J. Power Sources 195, 3893–3899 (2010)CrossRef
3.
Zurück zum Zitat J.K. Kaldellis, D. Zafirakis, The wind energy (r)evolution: a short review of a long history. Renewable Energy 36, 1887–1901 (2011)CrossRef J.K. Kaldellis, D. Zafirakis, The wind energy (r)evolution: a short review of a long history. Renewable Energy 36, 1887–1901 (2011)CrossRef
4.
Zurück zum Zitat J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13, 15384–15402 (2011)CrossRef J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13, 15384–15402 (2011)CrossRef
5.
Zurück zum Zitat Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012)CrossRef Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012)CrossRef
6.
Zurück zum Zitat P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRef P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRef
7.
Zurück zum Zitat M.-K. Song, S. Park, F.M. Alamgir, J. Cho, M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011)CrossRef M.-K. Song, S. Park, F.M. Alamgir, J. Cho, M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011)CrossRef
8.
Zurück zum Zitat A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)CrossRef A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)CrossRef
9.
Zurück zum Zitat H.H. Yin, K. Yu, H. Peng, Z.L. Zhang, R. Huang, J. Travas-Sejdic, Z.Q. Zhu, Porous V2O5 micro/nano-tubes: Synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties. J. Mater. Chem. 22, 5013–5019 (2012)CrossRef H.H. Yin, K. Yu, H. Peng, Z.L. Zhang, R. Huang, J. Travas-Sejdic, Z.Q. Zhu, Porous V2O5 micro/nano-tubes: Synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties. J. Mater. Chem. 22, 5013–5019 (2012)CrossRef
10.
Zurück zum Zitat C. Ban, N.A. Chernova, M.S. Whittingham, Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522–525 (2009)CrossRef C. Ban, N.A. Chernova, M.S. Whittingham, Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522–525 (2009)CrossRef
11.
Zurück zum Zitat Y.L. Cheah, V. Aravindan, S. Madhavi, Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3270–3277 (2012)CrossRef Y.L. Cheah, V. Aravindan, S. Madhavi, Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3270–3277 (2012)CrossRef
12.
Zurück zum Zitat X. Zhou, C. Cui, G. Wu, H. Yang, J. Wu, J. Wang, G. Gao, A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries. J. Power Sources 238, 95–102 (2013)CrossRef X. Zhou, C. Cui, G. Wu, H. Yang, J. Wu, J. Wang, G. Gao, A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries. J. Power Sources 238, 95–102 (2013)CrossRef
13.
Zurück zum Zitat A.M. Glushenkov, M.F. Hassan, V.I. Stukachev, Z.P. Guo, H.K. Liu, G.G. Kuvshinov, Y. Chen, Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J. Solid State Electrochem. 14, 1841–1846 (2010)CrossRef A.M. Glushenkov, M.F. Hassan, V.I. Stukachev, Z.P. Guo, H.K. Liu, G.G. Kuvshinov, Y. Chen, Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J. Solid State Electrochem. 14, 1841–1846 (2010)CrossRef
14.
Zurück zum Zitat Y. Wang, H.J. Zhang, W.X. Lim, J.Y. Lin, C.C. Wong, Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362–2368 (2011)CrossRef Y. Wang, H.J. Zhang, W.X. Lim, J.Y. Lin, C.C. Wong, Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362–2368 (2011)CrossRef
15.
Zurück zum Zitat Y. Wang, H.J. Zhang, K.W. Siah, C.C. Wong, J. Lin, A. Borgna, One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 21, 10336–10341 (2011)CrossRef Y. Wang, H.J. Zhang, K.W. Siah, C.C. Wong, J. Lin, A. Borgna, One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 21, 10336–10341 (2011)CrossRef
16.
Zurück zum Zitat H.Y. Wang, K.L. Huang, C.H. Huang, S.Q. Liu, Y. Ren, X.B. Huang, (NH4)(0.5)V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 196, 5645–5650 (2011)CrossRef H.Y. Wang, K.L. Huang, C.H. Huang, S.Q. Liu, Y. Ren, X.B. Huang, (NH4)(0.5)V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 196, 5645–5650 (2011)CrossRef
17.
Zurück zum Zitat Q. An, Q. Wei, L. Mai, J. Fei, X. Xu, Y. Zhao, M. Yan, P. Zhang, S. Huang, Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. PCCP 15, 16828–16833 (2013)CrossRef Q. An, Q. Wei, L. Mai, J. Fei, X. Xu, Y. Zhao, M. Yan, P. Zhang, S. Huang, Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. PCCP 15, 16828–16833 (2013)CrossRef
18.
Zurück zum Zitat X. Rui, Z. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim, Q. Yan, Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5, 556–560 (2013)CrossRef X. Rui, Z. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim, Q. Yan, Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5, 556–560 (2013)CrossRef
19.
Zurück zum Zitat Z.L. Wang, D. Xu, L.M. Wang, X.B. Zhang, Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. Chem.Plus Chem. 77, 124–128 (2012) Z.L. Wang, D. Xu, L.M. Wang, X.B. Zhang, Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. Chem.Plus Chem. 77, 124–128 (2012)
20.
Zurück zum Zitat Y.W. Li, J.H. Yao, E. Uchaker, J.W. Yang, Y.X. Huang, M. Zhang, G.Z. Cao, Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 3, 1171–1175 (2013)CrossRef Y.W. Li, J.H. Yao, E. Uchaker, J.W. Yang, Y.X. Huang, M. Zhang, G.Z. Cao, Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 3, 1171–1175 (2013)CrossRef
21.
Zurück zum Zitat Y.N. Ko, Y. Chan Kang, S.B. Park, A new strategy for synthesizing yolk-shell V(2)O(5) powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5, 8899–8903 (2013)CrossRef Y.N. Ko, Y. Chan Kang, S.B. Park, A new strategy for synthesizing yolk-shell V(2)O(5) powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5, 8899–8903 (2013)CrossRef
22.
Zurück zum Zitat A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476–1479 (2013)CrossRef A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476–1479 (2013)CrossRef
23.
Zurück zum Zitat H. Yu, X.H. Rui, H.T. Tan, J. Chen, X. Huang, C. Xu, W.L. Liu, D.Y.W. Yu, H.H. Hng, H.E. Hoster, Q.Y. Yan, Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 5, 4937–4943 (2013)CrossRef H. Yu, X.H. Rui, H.T. Tan, J. Chen, X. Huang, C. Xu, W.L. Liu, D.Y.W. Yu, H.H. Hng, H.E. Hoster, Q.Y. Yan, Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 5, 4937–4943 (2013)CrossRef
24.
Zurück zum Zitat Y.Y. Liu, M. Clark, Q.F. Zhang, D.M. Yu, D.W. Liu, J. Liu, G.Z. Cao, V2O5 nano-electrodes with high power and energy densities for thin film Li-Ion batteries. Adv. Energy Mater. 1, 194–202 (2011)CrossRef Y.Y. Liu, M. Clark, Q.F. Zhang, D.M. Yu, D.W. Liu, J. Liu, G.Z. Cao, V2O5 nano-electrodes with high power and energy densities for thin film Li-Ion batteries. Adv. Energy Mater. 1, 194–202 (2011)CrossRef
25.
Zurück zum Zitat C.F. Zhang, Z.X. Chen, Z.P. Guo, X.W. Lou, Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 6, 974–978 (2013)CrossRef C.F. Zhang, Z.X. Chen, Z.P. Guo, X.W. Lou, Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 6, 974–978 (2013)CrossRef
26.
Zurück zum Zitat D. Zhu, H. Liu, L. Lv, Y.D. Yao, W.Z. Yang, Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scr. Mater. 59, 642–645 (2008)CrossRef D. Zhu, H. Liu, L. Lv, Y.D. Yao, W.Z. Yang, Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scr. Mater. 59, 642–645 (2008)CrossRef
27.
Zurück zum Zitat A.Q. Pan, H.B. Wu, L. Yu, X.W. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chemie-Int. Ed. 52, 2226–2230 (2013)CrossRef A.Q. Pan, H.B. Wu, L. Yu, X.W. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chemie-Int. Ed. 52, 2226–2230 (2013)CrossRef
28.
Zurück zum Zitat J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5, 9889–9894 (2012)CrossRef J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5, 9889–9894 (2012)CrossRef
29.
Zurück zum Zitat X.-F. Zhang, K.-X. Wang, X. Wei, J.-S. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef X.-F. Zhang, K.-X. Wang, X. Wei, J.-S. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef
30.
Zurück zum Zitat X. Rui, J. Zhu, D. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim, Q. Yan, Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3, 4752–4758 (2011)CrossRef X. Rui, J. Zhu, D. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim, Q. Yan, Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3, 4752–4758 (2011)CrossRef
31.
Zurück zum Zitat M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Regan, C. O’Dwyer, N. Petkov, J.D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)CrossRef M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Regan, C. O’Dwyer, N. Petkov, J.D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)CrossRef
32.
Zurück zum Zitat Y.Q. Qian, A. Vu, W. Smyrl, A. Stein, Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 159, A1135–A1140 (2012)CrossRef Y.Q. Qian, A. Vu, W. Smyrl, A. Stein, Facile preparation and electrochemical properties of V2O5-graphene composite films as free-standing cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 159, A1135–A1140 (2012)CrossRef
33.
Zurück zum Zitat G.D. Du, K.H. Seng, Z.P. Guo, J. Liu, W.X. Li, D.Z. Jia, C. Cook, Z.W. Liu, H.K. Liu, Graphene-V2O5 center dot nH(2)O xerogel composite cathodes for lithium ion batteries. RSC Advances 1, 690–697 (2011)CrossRef G.D. Du, K.H. Seng, Z.P. Guo, J. Liu, W.X. Li, D.Z. Jia, C. Cook, Z.W. Liu, H.K. Liu, Graphene-V2O5 center dot nH(2)O xerogel composite cathodes for lithium ion batteries. RSC Advances 1, 690–697 (2011)CrossRef
34.
Zurück zum Zitat W. Tang, X.W. Gao, Y.S. Zhu, Y.B. Yue, Y. Shi, Y.P. Wu, K. Zhu, A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J. Mater. Chem. 22, 20143–20145 (2012)CrossRef W. Tang, X.W. Gao, Y.S. Zhu, Y.B. Yue, Y. Shi, Y.P. Wu, K. Zhu, A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J. Mater. Chem. 22, 20143–20145 (2012)CrossRef
35.
Zurück zum Zitat Z.Y. Cao, B.Q. Wei, V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries. Nano Energy 2, 481–490 (2013)CrossRef Z.Y. Cao, B.Q. Wei, V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries. Nano Energy 2, 481–490 (2013)CrossRef
36.
Zurück zum Zitat Y. Kim, Q.T. Ta, H.C. Dinh, P.K. Aum, I.H. Yeo, W. Il Cho, S.I. Mho, Cyclic stability of electrochemically embedded nanobeam V2O5 in polypyrrole films for Li battery cathodes. J. Electrochem. Soc. 158, A133–A138 (2011)CrossRef Y. Kim, Q.T. Ta, H.C. Dinh, P.K. Aum, I.H. Yeo, W. Il Cho, S.I. Mho, Cyclic stability of electrochemically embedded nanobeam V2O5 in polypyrrole films for Li battery cathodes. J. Electrochem. Soc. 158, A133–A138 (2011)CrossRef
37.
Zurück zum Zitat K.I. Park, H.M. Song, Y. Kim, S.I. Mho, W.I. Cho, I.H. Yeo, Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim. Acta 55, 8023–8029 (2010)CrossRef K.I. Park, H.M. Song, Y. Kim, S.I. Mho, W.I. Cho, I.H. Yeo, Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim. Acta 55, 8023–8029 (2010)CrossRef
38.
Zurück zum Zitat A.V. Murugan, Electrochemical properties of microwave irradiated synthesis of poly(3,4-ethylenedioxythiophene)/V2O5 nanocomposites as cathode materials for rechargeable lithium batteries. Electrochim. Acta 50, 4627–4636 (2005)CrossRef A.V. Murugan, Electrochemical properties of microwave irradiated synthesis of poly(3,4-ethylenedioxythiophene)/V2O5 nanocomposites as cathode materials for rechargeable lithium batteries. Electrochim. Acta 50, 4627–4636 (2005)CrossRef
39.
Zurück zum Zitat H.B. Zhao, A.B. Yuan, B.D. Liu, S.Y. Xing, X.Y. Wu, J.Q. Xu, High cyclic performance of V2O5@PPy composite as cathode of recharged lithium batteries. J. Appl. Electrochem. 42, 139–144 (2012)CrossRef H.B. Zhao, A.B. Yuan, B.D. Liu, S.Y. Xing, X.Y. Wu, J.Q. Xu, High cyclic performance of V2O5@PPy composite as cathode of recharged lithium batteries. J. Appl. Electrochem. 42, 139–144 (2012)CrossRef
40.
Zurück zum Zitat X.Z. Ren, C. Shi, P.X. Zhang, Y.K. Jiang, J.H. Liu, Q.L. Zhang, An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater. Sci. Eng. B-Adv. Functional Solid-State Mater. 177, 929–934 (2012)CrossRef X.Z. Ren, C. Shi, P.X. Zhang, Y.K. Jiang, J.H. Liu, Q.L. Zhang, An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater. Sci. Eng. B-Adv. Functional Solid-State Mater. 177, 929–934 (2012)CrossRef
41.
Zurück zum Zitat C.W. Kwon, A.V. Murugan, G. Campet, J. Portier, B.B. Kale, K. Vijaymohanan, J.H. Choy, Poly(3,4-ethylenedioxythiophene)V2O5 hybrids for lithium batteries. Electrochem. Commun. 4, 384–387 (2002)CrossRef C.W. Kwon, A.V. Murugan, G. Campet, J. Portier, B.B. Kale, K. Vijaymohanan, J.H. Choy, Poly(3,4-ethylenedioxythiophene)V2O5 hybrids for lithium batteries. Electrochem. Commun. 4, 384–387 (2002)CrossRef
42.
Zurück zum Zitat X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012)CrossRef X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012)CrossRef
43.
Zurück zum Zitat J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013)CrossRef J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013)CrossRef
44.
Zurück zum Zitat X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)CrossRef X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)CrossRef
45.
Zurück zum Zitat Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)CrossRef Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)CrossRef
46.
Zurück zum Zitat H.X. Ji, L.L. Zhang, M.T. Pettes, H.F. Li, S.S. Chen, L. Shi, R. Piner, R.S. Ruoff, Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 12, 2446–2451 (2012)CrossRef H.X. Ji, L.L. Zhang, M.T. Pettes, H.F. Li, S.S. Chen, L. Shi, R. Piner, R.S. Ruoff, Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 12, 2446–2451 (2012)CrossRef
47.
Zurück zum Zitat J.J. Yoo, K. Balakrishnan, J.S. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)CrossRef J.J. Yoo, K. Balakrishnan, J.S. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)CrossRef
48.
Zurück zum Zitat L.L. Peng, X. Peng, B.R. Liu, C.Z. Wu, Y. Xie, G.H. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-Performance. Flex. Planar Supercapacit. Nano Lett. 13, 2151–2157 (2013)CrossRef L.L. Peng, X. Peng, B.R. Liu, C.Z. Wu, Y. Xie, G.H. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-Performance. Flex. Planar Supercapacit. Nano Lett. 13, 2151–2157 (2013)CrossRef
49.
Zurück zum Zitat N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. 109, 17360–17365 (2012)CrossRef N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. 109, 17360–17365 (2012)CrossRef
50.
Zurück zum Zitat X. Rui, J. Zhu, W. Liu, H. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim, Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances 1, 117–122 (2011)CrossRef X. Rui, J. Zhu, W. Liu, H. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim, Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances 1, 117–122 (2011)CrossRef
51.
Zurück zum Zitat T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)CrossRef T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)CrossRef
52.
Zurück zum Zitat C.V.S. Reddy, J. Wei, Z. Quan-Yao, D. Zhi-Rong, C. Wen, S.-I. Mho, R.R. Kalluru, Cathodic performance of (V2O5 + PEG) nanobelts for Li ion rechargeable battery. J. Power Sources 166, 244–249 (2007)CrossRef C.V.S. Reddy, J. Wei, Z. Quan-Yao, D. Zhi-Rong, C. Wen, S.-I. Mho, R.R. Kalluru, Cathodic performance of (V2O5 + PEG) nanobelts for Li ion rechargeable battery. J. Power Sources 166, 244–249 (2007)CrossRef
53.
Zurück zum Zitat L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 10, 4750–4755 (2010)CrossRef L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 10, 4750–4755 (2010)CrossRef
54.
Zurück zum Zitat H.M. Song, D.Y. Yoo, S.K. Hong, J.S. Kim, W.I. Cho, S.I. Mho, Electrochemical impedance analysis of V2O5 and PEDOT composite film cathodes. Electroanalysis 23, 2094–2102 (2011)CrossRef H.M. Song, D.Y. Yoo, S.K. Hong, J.S. Kim, W.I. Cho, S.I. Mho, Electrochemical impedance analysis of V2O5 and PEDOT composite film cathodes. Electroanalysis 23, 2094–2102 (2011)CrossRef
55.
Zurück zum Zitat D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef
56.
Zurück zum Zitat R. Baddour-Hadjean, J.P. Pereira-Ramos, C. Navone, M. Smirnov, Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem. Mater. 20, 1916–1923 (2008)CrossRef R. Baddour-Hadjean, J.P. Pereira-Ramos, C. Navone, M. Smirnov, Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem. Mater. 20, 1916–1923 (2008)CrossRef
57.
Zurück zum Zitat S.-H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics 165, 111–116 (2003)CrossRef S.-H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics 165, 111–116 (2003)CrossRef
58.
Zurück zum Zitat B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong, T. Yu, Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436–2440 (2009)CrossRef B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong, T. Yu, Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436–2440 (2009)CrossRef
59.
Zurück zum Zitat A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) films post-spincasting. J. Appl. Phys. 112(11), 113709 (2012)CrossRef A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) films post-spincasting. J. Appl. Phys. 112(11), 113709 (2012)CrossRef
60.
Zurück zum Zitat J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3. J. Electron. Spectrosc. Relat. Phenom. 71, 249–261 (1995)CrossRef J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3. J. Electron. Spectrosc. Relat. Phenom. 71, 249–261 (1995)CrossRef
61.
Zurück zum Zitat O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011)CrossRef O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011)CrossRef
62.
Zurück zum Zitat F. Petraki, S. Kennou, S. Nespurek, M. Biler, A spectroscopic study for the application of a PEDOT-type material as buffer layer in electronic devices. Org. Electron. 11, 1423–1431 (2010)CrossRef F. Petraki, S. Kennou, S. Nespurek, M. Biler, A spectroscopic study for the application of a PEDOT-type material as buffer layer in electronic devices. Org. Electron. 11, 1423–1431 (2010)CrossRef
63.
Zurück zum Zitat L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan, J. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 13, 740–745 (2013)CrossRef L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan, J. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 13, 740–745 (2013)CrossRef
64.
Zurück zum Zitat Y.L. Cheah, V. Aravindan, S. Madhavi, Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 160, A1016–A1024 (2013)CrossRef Y.L. Cheah, V. Aravindan, S. Madhavi, Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 160, A1016–A1024 (2013)CrossRef
65.
Zurück zum Zitat J.L. Cheng, B. Wang, H.L.L. Xin, G.C. Yang, H.Q. Cai, F.D. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)CrossRef J.L. Cheng, B. Wang, H.L.L. Xin, G.C. Yang, H.Q. Cai, F.D. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)CrossRef
66.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef
67.
Zurück zum Zitat G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
68.
Zurück zum Zitat W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRef W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRef
69.
Zurück zum Zitat J.T. Zhang, X.S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5, 818–841 (2012)CrossRef J.T. Zhang, X.S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5, 818–841 (2012)CrossRef
Metadaten
Titel
Vanadium Pentoxide for Li-Ion Storage
verfasst von
Dr. Dongliang Chao
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3080-3_2