Skip to main content

2016 | OriginalPaper | Buchkapitel

67. Vapor Clouds

verfasst von : Nicolas F. Ponchaut, Ph.D., PE, Francesco Colella, Ph.D., Kevin C. Marr, Ph.D., PE

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vapor cloud explosions can be devastating events that result in significant damage to property and loss of life. Although vapor cloud explosion hazards are more common for oil and gas facilities, vapor cloud explosion incidents have occurred at other industrial facilities, such as chemical waste and water treatment plants [1, 2]. Analysis of vapor cloud explosions presents many challenges to engineers and investigators and requires an understanding of several issues. Some of these issues include the potential phase change of the source via condensation or flashing, dispersion characteristics of the vapor due to atmospheric conditions, and effects of buildings and structures on cloud dispersion and flame front propagation. The scope of this chapter is to discuss several of these key issues and present practical tools that can be used in vapor cloud explosion investigations or hazard analyses. Owing to the potentially large scale of vapor clouds, representative experimental testing is limited and often impractical. Therefore, this chapter focuses on analytical and computation methodologies that have been validated using experimental tests, and notes several standardized tests that can be used to quantify specific vapor cloud hazards. It is important to note that these methodologies only provide order of magnitude estimates and analysis, and therefore careful interpretation is required. Engineering experience often serves as the most important element to a successful vapor cloud explosion analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This method is limited to incompressible jets where u 0 is lower than 1/3 of the speed of the sound at ambient pressure.
 
Literatur
1.
Zurück zum Zitat U.S. Chemical Safety and Hazard Investigation Board, “Case Study: Explosion and Fire in West Carrollton, Ohio,” U.S. Chemical Safety and Hazard Investigation Board, West Carollton, Ohio, 2010. U.S. Chemical Safety and Hazard Investigation Board, “Case Study: Explosion and Fire in West Carrollton, Ohio,” U.S. Chemical Safety and Hazard Investigation Board, West Carollton, Ohio, 2010.
2.
Zurück zum Zitat U.S. Chemical Safety and Hazard Investigation Board, “Investigation Report: Methanol Tank Explosion and Fire-Bethune Point Wastewater Treatment Plant,” U.S. Chemical Safety and Hazard Investigation Board, 2006. U.S. Chemical Safety and Hazard Investigation Board, “Investigation Report: Methanol Tank Explosion and Fire-Bethune Point Wastewater Treatment Plant,” U.S. Chemical Safety and Hazard Investigation Board, 2006.
3.
Zurück zum Zitat S. R. Hanna and P. J. Drivas, Guidelines for Use of Vapor Cloud Dispersion Models, Center for Chemical Process Safety, 1987. S. R. Hanna and P. J. Drivas, Guidelines for Use of Vapor Cloud Dispersion Models, Center for Chemical Process Safety, 1987.
4.
Zurück zum Zitat E. A. Avallone, T. Baumeister III and A. M. Sadegh, Marks’ Standard Handbook for Mechanical Engineers. 11th Edition, New York: McGraw Hill, 2007. E. A. Avallone, T. Baumeister III and A. M. Sadegh, Marks’ Standard Handbook for Mechanical Engineers. 11th Edition, New York: McGraw Hill, 2007.
5.
Zurück zum Zitat R. D. Blevins, Applied Fluid Dynamics Handbook, Malabar: Krieger Publishing Company, 2003. R. D. Blevins, Applied Fluid Dynamics Handbook, Malabar: Krieger Publishing Company, 2003.
6.
Zurück zum Zitat Crane, Flow of Fluids Through Valves, Fittings and Pipe. Technical Paper No. 410M. Metric Version., Crane, 2010. Crane, Flow of Fluids Through Valves, Fittings and Pipe. Technical Paper No. 410M. Metric Version., Crane, 2010.
7.
Zurück zum Zitat R. Darby, Chemical Engineering Fluid Mechanics, 2nd Edition, Boca Raton: CRC Press, 2001. R. Darby, Chemical Engineering Fluid Mechanics, 2nd Edition, Boca Raton: CRC Press, 2001.
8.
Zurück zum Zitat I. E. Idelchik, Handbook of Hydraulic Resistance. 3rd edition., Jaico Publishing House, 2005. I. E. Idelchik, Handbook of Hydraulic Resistance. 3rd edition., Jaico Publishing House, 2005.
9.
Zurück zum Zitat G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2002. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2002.
10.
Zurück zum Zitat Det Norske Veritas, “PVAP Theory Document,” DNV Software, 2006. Det Norske Veritas, “PVAP Theory Document,” DNV Software, 2006.
11.
Zurück zum Zitat D. P. Hoult, “Oil Spreading on the Sea,” Annual Reviews of Fluid Mechanics, vol. 4, pp. 341–368, 1972.CrossRef D. P. Hoult, “Oil Spreading on the Sea,” Annual Reviews of Fluid Mechanics, vol. 4, pp. 341–368, 1972.CrossRef
12.
Zurück zum Zitat N. F. Ponchaut and H. K. Kytömaa, “Transient Spreading of LNG on Water,” in Mary Kay O’Connor Safety Center, College Station, TX, 2009. N. F. Ponchaut and H. K. Kytömaa, “Transient Spreading of LNG on Water,” in Mary Kay O’Connor Safety Center, College Station, TX, 2009.
13.
Zurück zum Zitat S. R. Saraf and G. A. Melhem, “Modeling LNG Pool Spreading and Vaporization,” in AIChE Spring Meeting, Atlanta, GA, 2005. S. R. Saraf and G. A. Melhem, “Modeling LNG Pool Spreading and Vaporization,” in AIChE Spring Meeting, Atlanta, GA, 2005.
14.
Zurück zum Zitat D. M. Webber and S. J. Jones, “A Model of Spreading Vaporising Pools,” in International Conference on Vapor Cloud Modeling, 1990. D. M. Webber and S. J. Jones, “A Model of Spreading Vaporising Pools,” in International Conference on Vapor Cloud Modeling, 1990.
15.
Zurück zum Zitat C. J. H. van den Bosch, “Chapter 3: Pool Evaporation,” in Methods for the Calculation of Physical Effects due to Releases of Hazardous Materials (Liquids and Gases)- CPR 14E, The Hague, 2005. C. J. H. van den Bosch, “Chapter 3: Pool Evaporation,” in Methods for the Calculation of Physical Effects due to Releases of Hazardous Materials (Liquids and Gases)- CPR 14E, The Hague, 2005.
16.
Zurück zum Zitat I. G. Opschoor, “Ch. 5,” in Methods for the Calculation of the Physical Effects of the Escape of Dangerous Material, TNO Yellow Book, 1978. I. G. Opschoor, “Ch. 5,” in Methods for the Calculation of the Physical Effects of the Escape of Dangerous Material, TNO Yellow Book, 1978.
17.
Zurück zum Zitat N. F. Ponchaut, H. K. Kytömaa, D. R. Morrison and M. K. Chernovsky, “Modeling the Vapor Source Term Associated with the Spill of LNG into a Sump or Impoundment Area,” JLPP, vol. 24, no. 6, pp. 870–878, 2011. N. F. Ponchaut, H. K. Kytömaa, D. R. Morrison and M. K. Chernovsky, “Modeling the Vapor Source Term Associated with the Spill of LNG into a Sump or Impoundment Area,” JLPP, vol. 24, no. 6, pp. 870–878, 2011.
18.
Zurück zum Zitat D. M. Webber, S. E. Gant, M. J. Ivings and S. F. Jagger, “LNG Source Term Models for Hazard Analysis: a Review of the State-of-the-Art and Approach to Model Assessment,” The Fire Protection Research Foundation, 2009. D. M. Webber, S. E. Gant, M. J. Ivings and S. F. Jagger, “LNG Source Term Models for Hazard Analysis: a Review of the State-of-the-Art and Approach to Model Assessment,” The Fire Protection Research Foundation, 2009.
19.
Zurück zum Zitat J. Melheim and M. Ichard, “Pool and Fire in FLACS v9.0,” in FLUG Meeting, Bergen, May 6, 2008. J. Melheim and M. Ichard, “Pool and Fire in FLACS v9.0,” in FLUG Meeting, Bergen, May 6, 2008.
20.
Zurück zum Zitat GexCon, “FLACS v9.0 User’s Manual,” 2009. GexCon, “FLACS v9.0 User’s Manual,” 2009.
21.
Zurück zum Zitat F. Inc., FLUENT 6.3 User’s Guide, 2006. F. Inc., FLUENT 6.3 User’s Guide, 2006.
22.
Zurück zum Zitat CD-Adapco, User Guide Star-CCM+ Version 8.02, 2013. CD-Adapco, User Guide Star-CCM+ Version 8.02, 2013.
23.
Zurück zum Zitat W. M. Chase, NIST JANAF Thermochemical Tables, 4th Edition. (Part I and Part II), 1998. W. M. Chase, NIST JANAF Thermochemical Tables, 4th Edition. (Part I and Part II), 1998.
24.
Zurück zum Zitat D. Drysdale, An Introduction to Fire Dynamics. 2nd Edition, John Wiley & Sons, 2002. D. Drysdale, An Introduction to Fire Dynamics. 2nd Edition, John Wiley & Sons, 2002.
25.
Zurück zum Zitat F. P. Lees, Loss Prevention in the Process Industries. Hazard Identification, Assessment and Control. 2nd Edition, Butterworth Heinemann, 1996. F. P. Lees, Loss Prevention in the Process Industries. Hazard Identification, Assessment and Control. 2nd Edition, Butterworth Heinemann, 1996.
26.
Zurück zum Zitat D. Mackay and R. S. Matsugu, “Evaporation Rates of Liquid Hydrocarbon Spills on Land and Water,” Canadian J. of Chem Eng., vol. 51, pp. 434–439, 1973.CrossRef D. Mackay and R. S. Matsugu, “Evaporation Rates of Liquid Hydrocarbon Spills on Land and Water,” Canadian J. of Chem Eng., vol. 51, pp. 434–439, 1973.CrossRef
27.
Zurück zum Zitat M. R. Lindeburg, Mechanical Engineering Reference Manual for the PE Exam, 12th Edition, Professional Publications, Inc. (PPI), 2006. M. R. Lindeburg, Mechanical Engineering Reference Manual for the PE Exam, 12th Edition, Professional Publications, Inc. (PPI), 2006.
28.
Zurück zum Zitat F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Introduction to Heat Transfer, 5th edition, John Wiley & Sons, 2007. F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Introduction to Heat Transfer, 5th edition, John Wiley & Sons, 2007.
29.
Zurück zum Zitat S. B. G. H. R. Hanna, “Handbook of atmospheric diffusion,” Technical information center, U.S. department of Energy, 1982. S. B. G. H. R. Hanna, “Handbook of atmospheric diffusion,” Technical information center, U.S. department of Energy, 1982.
30.
Zurück zum Zitat J. Woodward, Estimating the flammable mass of a vapor cloud, American Institute of Chemical Engineers, 1999. J. Woodward, Estimating the flammable mass of a vapor cloud, American Institute of Chemical Engineers, 1999.
31.
Zurück zum Zitat F. Gifford, “Turbulent diffusion typing schemes: a review,” Nuclear Safety, pp. 68–86, 1976. F. Gifford, “Turbulent diffusion typing schemes: a review,” Nuclear Safety, pp. 68–86, 1976.
32.
Zurück zum Zitat D. Turner, “Workbook of atmospheric dispersion estimates,” Environmental Protection Agency, 1970. D. Turner, “Workbook of atmospheric dispersion estimates,” Environmental Protection Agency, 1970.
33.
Zurück zum Zitat J. Casal, Evaluation of the Effects and Consequences of Major Accidents in industrial Plants, Elsevier, 2008. J. Casal, Evaluation of the Effects and Consequences of Major Accidents in industrial Plants, Elsevier, 2008.
34.
Zurück zum Zitat C. Alinot and C. Masson, “k-ε Model for the atmospheric boundary layer under various thermal stratifications,” Journal of solar energy engineering – Transaction of the ASME, pp. 127: 438–443, 2005. C. Alinot and C. Masson, “k-ε Model for the atmospheric boundary layer under various thermal stratifications,” Journal of solar energy engineering – Transaction of the ASME, pp. 127: 438–443, 2005.
35.
Zurück zum Zitat TNO, “Methods for the calculation of physical effects (Yellow book),” Directorate General of labor, The Hague, 1997. TNO, “Methods for the calculation of physical effects (Yellow book),” Directorate General of labor, The Hague, 1997.
36.
Zurück zum Zitat T. Spicer and J. Havens, “User’s guide for DEGADIS 2.1 dense gas dispersion model environmental protection agency, EPA-450/4-89-019,” 1989. T. Spicer and J. Havens, “User’s guide for DEGADIS 2.1 dense gas dispersion model environmental protection agency, EPA-450/4-89-019,” 1989.
37.
Zurück zum Zitat F. Pasquill, Atmospheric diffusion, 2nd ed., Halstead Press, 1974. F. Pasquill, Atmospheric diffusion, 2nd ed., Halstead Press, 1974.
38.
Zurück zum Zitat D. Golder, “Relations among stability parameters in the surface layer,” Boundary-Layer Met., pp. 3: 47–58, 1972. D. Golder, “Relations among stability parameters in the surface layer,” Boundary-Layer Met., pp. 3: 47–58, 1972.
39.
Zurück zum Zitat R. E. Britter and J. McQuaid, “Workbook on the dispersion of dense gases,” Health and Safety Executive, Sheffield, 1988. R. E. Britter and J. McQuaid, “Workbook on the dispersion of dense gases,” Health and Safety Executive, Sheffield, 1988.
40.
Zurück zum Zitat R. Britter, “Atmospheric dispersion of dense gases,” Annual review of Fluid mechanics, pp. 21: 317–344, 1989. R. Britter, “Atmospheric dispersion of dense gases,” Annual review of Fluid mechanics, pp. 21: 317–344, 1989.
41.
Zurück zum Zitat L.-H. Anay, “A review of large-scale LNG spills: Experiments and modeling,” Journal of Hazardous materials, vol. A132, pp. 119–140, 2006. L.-H. Anay, “A review of large-scale LNG spills: Experiments and modeling,” Journal of Hazardous materials, vol. A132, pp. 119–140, 2006.
42.
Zurück zum Zitat R. Koopman and D. Ermak, “Lesson learned from LNG safety research,” Journal of Hazardous Materials, pp. 140: 412–428, 2007. R. Koopman and D. Ermak, “Lesson learned from LNG safety research,” Journal of Hazardous Materials, pp. 140: 412–428, 2007.
43.
Zurück zum Zitat T. Spicer and J. Havens, “Application of dispersion models to flammable cloud analyses,” Journal of Hazardous materials, pp. 49: 115–124, 1996. T. Spicer and J. Havens, “Application of dispersion models to flammable cloud analyses,” Journal of Hazardous materials, pp. 49: 115–124, 1996.
44.
Zurück zum Zitat J. E. Simpson and R. E. Britter, “The dynamics of the head of a gravity current advancing over a horizontal surface,” Journal of Fluid Mechanics, pp. 94: 477–495, 1979. J. E. Simpson and R. E. Britter, “The dynamics of the head of a gravity current advancing over a horizontal surface,” Journal of Fluid Mechanics, pp. 94: 477–495, 1979.
45.
Zurück zum Zitat C. Chen and W. Rodi, “A review of experimental Data of vertical turbulent jets,” Iowa Institute of Hydraulic Research, 1976. C. Chen and W. Rodi, “A review of experimental Data of vertical turbulent jets,” Iowa Institute of Hydraulic Research, 1976.
46.
Zurück zum Zitat J. Holland, “A meteorological survey of the Oak ridge area: final report covering the period 1858-1952.,” Atomic Energy Comm, Report ORO-99, Washington DC, 1953. J. Holland, “A meteorological survey of the Oak ridge area: final report covering the period 1858-1952.,” Atomic Energy Comm, Report ORO-99, Washington DC, 1953.
47.
Zurück zum Zitat C. Chen and W. Rodi, Vertical Turbulent buoyant jets, Oxford: Pergamon Press, 1980. C. Chen and W. Rodi, Vertical Turbulent buoyant jets, Oxford: Pergamon Press, 1980.
48.
Zurück zum Zitat M. Epstein and H. Fauske, “Total Flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release,” Journal of Hazardous Materials, pp. 147: 1037–1050, 2007. M. Epstein and H. Fauske, “Total Flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release,” Journal of Hazardous Materials, pp. 147: 1037–1050, 2007.
49.
Zurück zum Zitat D. Ermak, “Users Manual for SLAB: An atmospheric dispersion model fo denser-than-air releases, ACRL-MA-105607,” Lawrence Livermore National Laboratory, 1980. D. Ermak, “Users Manual for SLAB: An atmospheric dispersion model fo denser-than-air releases, ACRL-MA-105607,” Lawrence Livermore National Laboratory, 1980.
50.
Zurück zum Zitat HGSYSTEM, “THE HEAVY GAS DISPERSION MODEL HEGADAS – Technical Reference Manual”. HGSYSTEM, “THE HEAVY GAS DISPERSION MODEL HEGADAS – Technical Reference Manual”.
51.
Zurück zum Zitat D. Webber, S. Jones, G. Tickle and T. Wren, “A model for a dispersing dense gas cloud and the computer implementation DRIFT I: Near instantaneous Release.”,“ SRD Report SRD/HSE R586, 1982. D. Webber, S. Jones, G. Tickle and T. Wren, “A model for a dispersing dense gas cloud and the computer implementation DRIFT I: Near instantaneous Release.”,“ SRD Report SRD/HSE R586, 1982.
52.
Zurück zum Zitat C. E. R. Consultants, “GASTAR Version 3,” Cambridge, UK, 2002. C. E. R. Consultants, “GASTAR Version 3,” Cambridge, UK, 2002.
53.
Zurück zum Zitat T. Spicer and J. Havens, “Field test validation of the DEGADIS model,” Journal of hazardous materials, vol. 16, pp. 231–245, 1987.CrossRef T. Spicer and J. Havens, “Field test validation of the DEGADIS model,” Journal of hazardous materials, vol. 16, pp. 231–245, 1987.CrossRef
54.
Zurück zum Zitat R. Hankin, “Heavy Gas dispersion: integral models and shallow layer models,” Journal of hazardous materials, pp. 203: 1–10, 2003. R. Hankin, “Heavy Gas dispersion: integral models and shallow layer models,” Journal of hazardous materials, pp. 203: 1–10, 2003.
55.
Zurück zum Zitat R. Hankin and R. Britter, “TWODEE: the Health and Safety laboratory’s Shallow layer model for heavy gas dispersion. Part 1. Mathematical Basis and Physical Assumptions,” Journal of hazardous Materials, pp. 66: 211–226, 1999. R. Hankin and R. Britter, “TWODEE: the Health and Safety laboratory’s Shallow layer model for heavy gas dispersion. Part 1. Mathematical Basis and Physical Assumptions,” Journal of hazardous Materials, pp. 66: 211–226, 1999.
56.
Zurück zum Zitat S. Ott and M. Nielsen, “Shallow layer modeling of dense clouds – Risoe-R-901,” Risoe National Laboratory, Roskilde,, 1996. S. Ott and M. Nielsen, “Shallow layer modeling of dense clouds – Risoe-R-901,” Risoe National Laboratory, Roskilde,, 1996.
57.
Zurück zum Zitat A. Venetsanos, J. Bartzis, J. Wuertz and D. Papailiou, “DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features,” Journal of hazardous Materials, pp. A99: 111–144, 2003. A. Venetsanos, J. Bartzis, J. Wuertz and D. Papailiou, “DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features,” Journal of hazardous Materials, pp. A99: 111–144, 2003.
58.
Zurück zum Zitat J. S. Scire, D. G. Strimaitis and R. J. Yamartino, “A User’s Guide for the CALPUFF Dispersion Model, V.5,” Earth Tech. Inc., 2000. J. S. Scire, D. G. Strimaitis and R. J. Yamartino, “A User’s Guide for the CALPUFF Dispersion Model, V.5,” Earth Tech. Inc., 2000.
59.
Zurück zum Zitat N. van Egmond and H. Kesseboom, “Mesoscale air pollution dispersion modes – II Lagrangian Puff model and comparison with Eulerial grid model,” Atmospheric Environment, pp. 17: 267–274, 1983. N. van Egmond and H. Kesseboom, “Mesoscale air pollution dispersion modes – II Lagrangian Puff model and comparison with Eulerial grid model,” Atmospheric Environment, pp. 17: 267–274, 1983.
60.
Zurück zum Zitat F. Ludwig, L. Gasiorek and R. Ruff, “Simplification of a Gaussian puff model for real-time minicomputer use,” Atmospheric Environment, pp. 11: 431–436, 1977. F. Ludwig, L. Gasiorek and R. Ruff, “Simplification of a Gaussian puff model for real-time minicomputer use,” Atmospheric Environment, pp. 11: 431–436, 1977.
61.
Zurück zum Zitat R. Sykes, C. Cerasoli and D. Henn, “The representation of dynamic flow effects in a Lagrangian Puff dispersion model,” Journal of Hazardous Materials, pp. A64: 223–247, 1999. R. Sykes, C. Cerasoli and D. Henn, “The representation of dynamic flow effects in a Lagrangian Puff dispersion model,” Journal of Hazardous Materials, pp. A64: 223–247, 1999.
62.
Zurück zum Zitat S. Chan, “FEM3C: An improved three-dimensional heavy-gas dispersion model: user’s manual, UCRL-MA-116567 Rev.1,” Lawrence Livermore National Laboratory, 1994. S. Chan, “FEM3C: An improved three-dimensional heavy-gas dispersion model: user’s manual, UCRL-MA-116567 Rev.1,” Lawrence Livermore National Laboratory, 1994.
63.
Zurück zum Zitat M. Pontiggia, M. Derudi, V. Busini, and R. Rota, “Hazardous gas dispersion: A CFD model for atmospheric stability,” Journal of Hazardous Materials classes, pp. 171: 739–747, 2009. M. Pontiggia, M. Derudi, V. Busini, and R. Rota, “Hazardous gas dispersion: A CFD model for atmospheric stability,” Journal of Hazardous Materials classes, pp. 171: 739–747, 2009.
64.
Zurück zum Zitat R. K. Calay, A. E. Holdo, “Modelling the dispersion of flashing jets using CFD,” Journal of Hazardous Materials, pp. 154: 1198–1209, 2008. R. K. Calay, A. E. Holdo, “Modelling the dispersion of flashing jets using CFD,” Journal of Hazardous Materials, pp. 154: 1198–1209, 2008.
65.
Zurück zum Zitat H. Coward and G. Jones, “Limits of flammability of gases and vapors,” U.S. Bureau of Mines, Bulletin 503, 1952. H. Coward and G. Jones, “Limits of flammability of gases and vapors,” U.S. Bureau of Mines, Bulletin 503, 1952.
66.
Zurück zum Zitat M. Zabetakis, “Flammability characteristics of combustible gasses and vapors,” U.S. Bureau of Mines, Bulletin 627, 1965. M. Zabetakis, “Flammability characteristics of combustible gasses and vapors,” U.S. Bureau of Mines, Bulletin 627, 1965.
67.
Zurück zum Zitat G. Karim, I. Wierzba and S. Boon, “Some considerations of the lean flammability limits of mixtures involving hydrogen,” International Journal of Hydrogen Energy, vol. 10, no. 1, pp. 117–123, 1985.CrossRef G. Karim, I. Wierzba and S. Boon, “Some considerations of the lean flammability limits of mixtures involving hydrogen,” International Journal of Hydrogen Energy, vol. 10, no. 1, pp. 117–123, 1985.CrossRef
68.
Zurück zum Zitat M. Molnarne, P. Mizsey and V. Schröder, “Flammability of gas mixtures. Part 2: influence of inert gases,” Journal of Hazardous Materials, vol. 121, no. 1–3, pp. 45–49, 2005. M. Molnarne, P. Mizsey and V. Schröder, “Flammability of gas mixtures. Part 2: influence of inert gases,” Journal of Hazardous Materials, vol. 121, no. 1–3, pp. 45–49, 2005.
69.
Zurück zum Zitat T. Ma, “A thermal theory for estimating the flammability limits of a mixture,” Fire Safety Journal, vol. 46, pp. 558–567, 2011.CrossRef T. Ma, “A thermal theory for estimating the flammability limits of a mixture,” Fire Safety Journal, vol. 46, pp. 558–567, 2011.CrossRef
70.
Zurück zum Zitat Center for Chemical Process Safety, Guidelines for vapor cloud explosion, pressure vessel burst, BLEVE and flash fire hazards, 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2010. Center for Chemical Process Safety, Guidelines for vapor cloud explosion, pressure vessel burst, BLEVE and flash fire hazards, 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2010.
71.
Zurück zum Zitat M. Glor, “Ignition hazard due to static electricity in particulate processes,” Powder Technology, Vols. 135–136, pp. 223–233, 2003. M. Glor, “Ignition hazard due to static electricity in particulate processes,” Powder Technology, Vols. 135–136, pp. 223–233, 2003.
72.
Zurück zum Zitat I. Glassman, Combustion, 3rd Ed., San Diego, CA: Academic Press, 1996. I. Glassman, Combustion, 3rd Ed., San Diego, CA: Academic Press, 1996.
73.
Zurück zum Zitat S. Turns, An introduction to combustion: concepts and applications, 3rd Ed., McGraw-Hill, 2012. S. Turns, An introduction to combustion: concepts and applications, 3rd Ed., McGraw-Hill, 2012.
74.
Zurück zum Zitat C. Law, Combustion Physics, Cambridge University Press, 2006. C. Law, Combustion Physics, Cambridge University Press, 2006.
75.
Zurück zum Zitat W. Brasie and D. Simpson, “Guidelines for estimating damage explosion,” in 63rd National AIChE Meeting, New York, 1968. W. Brasie and D. Simpson, “Guidelines for estimating damage explosion,” in 63rd National AIChE Meeting, New York, 1968.
76.
Zurück zum Zitat W. Brasie, “The hazard potential of chemicals,” AIChE Loss Prevention, vol. 10, pp. 135–140, 1976. W. Brasie, “The hazard potential of chemicals,” AIChE Loss Prevention, vol. 10, pp. 135–140, 1976.
77.
Zurück zum Zitat Health and Safety Executive, “Second report: advisory committee major hazards,” U.K. Health and Safety Commission, 1979. Health and Safety Executive, “Second report: advisory committee major hazards,” U.K. Health and Safety Commission, 1979.
78.
Zurück zum Zitat Health and Safety Executive, “The effect of explosions in the process industries,” Loss Prevention bulletin, vol. 68, pp. 37–47, 1986. Health and Safety Executive, “The effect of explosions in the process industries,” Loss Prevention bulletin, vol. 68, pp. 37–47, 1986.
79.
Zurück zum Zitat Factory Mutual Research Corporation, “Guidelines for the estimation of property damage from outdoor vapor cloud explosions in chemical processing facilities,” Technical Report, 1990. Factory Mutual Research Corporation, “Guidelines for the estimation of property damage from outdoor vapor cloud explosions in chemical processing facilities,” Technical Report, 1990.
80.
Zurück zum Zitat R. Harris and M. Wickens, “Understanding vapor cloud explosions-an experimental study,” in 55th Autumn meeting of the Institution of Gas Engineers, Kensington, UK, 1989. R. Harris and M. Wickens, “Understanding vapor cloud explosions-an experimental study,” in 55th Autumn meeting of the Institution of Gas Engineers, Kensington, UK, 1989.
81.
Zurück zum Zitat A. Van den Berg, “The multi-energy method-a framework for vapor cloud explosion blast prediction,” Journal of Hazardous Materials, vol. 12, pp. 1–10, 1985.CrossRef A. Van den Berg, “The multi-energy method-a framework for vapor cloud explosion blast prediction,” Journal of Hazardous Materials, vol. 12, pp. 1–10, 1985.CrossRef
82.
Zurück zum Zitat A. Van den Berg, J. van Wingerden, J. Zeeuwen and H. Pasman, “Current research at TNO on vapor cloud explosion modeling,” in International Conference on Vapor Cloud Modeling, Cambridge, MA, 1987. A. Van den Berg, J. van Wingerden, J. Zeeuwen and H. Pasman, “Current research at TNO on vapor cloud explosion modeling,” in International Conference on Vapor Cloud Modeling, Cambridge, MA, 1987.
83.
Zurück zum Zitat W. Mercx and A. van den Berg, “Chapter 5. Vapour cloud explosions,” in Methods for the Calculation of Physical Effects due to Releases of Hazardous Materials (Liquids and Gases)- CPR 14E, The Hague, 2005. W. Mercx and A. van den Berg, “Chapter 5. Vapour cloud explosions,” in Methods for the Calculation of Physical Effects due to Releases of Hazardous Materials (Liquids and Gases)- CPR 14E, The Hague, 2005.
84.
Zurück zum Zitat K. Kinsella, “A rapid assessment methodology for the prediction of vapour cloud explosion overpressure,” in International conference and exhibition on safety, health and loss prevention in the oil, chemical and process industries, Singapore, 1993. K. Kinsella, “A rapid assessment methodology for the prediction of vapour cloud explosion overpressure,” in International conference and exhibition on safety, health and loss prevention in the oil, chemical and process industries, Singapore, 1993.
85.
Zurück zum Zitat N. R. Popat, C. A. Catlin, B. J. Antzen, R. P. Lindstedt, G. H. Hjertager, T. Solberg, O. Saeter and A. C. van der Berg, “Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models,” Journal of Hazardous Materials, vol. 45, pp. 1–25, 1996. N. R. Popat, C. A. Catlin, B. J. Antzen, R. P. Lindstedt, G. H. Hjertager, T. Solberg, O. Saeter and A. C. van der Berg, “Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models,” Journal of Hazardous Materials, vol. 45, pp. 1–25, 1996.
86.
Zurück zum Zitat C. Savvides, V. Tam, J. E. Os, H. O. R., K. van Wingerden and J. Renoult, “Dispersion of fuel in offshore modules: Comparison of prediction using FLACS and full-scale experiments,” in Major Hazards Offshore: Conference proceedings, London, 2001. C. Savvides, V. Tam, J. E. Os, H. O. R., K. van Wingerden and J. Renoult, “Dispersion of fuel in offshore modules: Comparison of prediction using FLACS and full-scale experiments,” in Major Hazards Offshore: Conference proceedings, London, 2001.
87.
Zurück zum Zitat S. Dharmavaram, S. R. Hanna and O. R. Hansen, “Consequence analysis-using a CFD model for industrial sites,” Process Safety Progress, vol. 24, no. 4, pp. 316–327, 2005.CrossRef S. Dharmavaram, S. R. Hanna and O. R. Hansen, “Consequence analysis-using a CFD model for industrial sites,” Process Safety Progress, vol. 24, no. 4, pp. 316–327, 2005.CrossRef
88.
Zurück zum Zitat Buncefield Major Incident Investigation Board, “The Buncefield Incident 11 December 2005: The final report of the Major Incident Investigation Board,” 2008. Buncefield Major Incident Investigation Board, “The Buncefield Incident 11 December 2005: The final report of the Major Incident Investigation Board,” 2008.
89.
Zurück zum Zitat S. G. Davis, P. Hinze, H. O. R. and K. van Wingerden, “Investigation techniques used to determine the massive vapor cloud explosion at the Buncefield fuel depot,” in International Symposium of Fire Investigation Science and Technology, 2010. S. G. Davis, P. Hinze, H. O. R. and K. van Wingerden, “Investigation techniques used to determine the massive vapor cloud explosion at the Buncefield fuel depot,” in International Symposium of Fire Investigation Science and Technology, 2010.
Metadaten
Titel
Vapor Clouds
verfasst von
Nicolas F. Ponchaut, Ph.D., PE
Francesco Colella, Ph.D.
Kevin C. Marr, Ph.D., PE
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_67