Skip to main content
Erschienen in:

30.09.2021

Variability of Hardening Phase Morphology and Topology in Pseudo-β-Titanium Alloys Quenched for β-Structure

verfasst von: N. A. Nochovnaya, A. A. Shiryaev, A. N. Andrianov, E. A. Davydova

Erschienen in: Metallurgist | Ausgabe 5-6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Questions of structure formation for “self-hardening” metastable pseudo-β-titanium alloys after deformation and heat treatment are considered. Information is provided for variation of the phase composition in various alloys of this group. Questions of morphology variability and topology of α-phase particles, i.e., the main hardening phase in “self-hardening” metastable β-titanium alloys, as well as the relationship of structural parameters with chemical composition and versions of thermomechanical treatment are considered in detail. The article discusses some of the latest advances in formation of different secondary α-phase morphology and topology, as well as estimates of prospects for further development in this area of research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here and subsequently [Mo]equ is calculated by an equation, wt.%: [Mo]equ = 1.0Mo + 0.67V + 0.44W + 0.28Nb + 0.22Ta + 2.9Fe + 1.6Cr + 1.25Ni + 1.7Mn + 1.7Co.
 
Literatur
1.
Zurück zum Zitat R. P. Kolli and A. Devaraj, “A review of metastable beta titanium alloys,” Metals, 8, 1–41 (2018).CrossRef R. P. Kolli and A. Devaraj, “A review of metastable beta titanium alloys,” Metals, 8, 1–41 (2018).CrossRef
2.
Zurück zum Zitat R. Boyer, “Aerospace applications of beta titanium alloys,” JOM, No. 6, 20–23 (1994).CrossRef R. Boyer, “Aerospace applications of beta titanium alloys,” JOM, No. 6, 20–23 (1994).CrossRef
3.
Zurück zum Zitat S. L. Nyakana, J. C. Fanning, and R. R. Boyer, “Quick reference guide for β titanium alloys in the 00s,” J. of Mater. Eng. and Performance, 14, No. 6, 799–811 (2005).CrossRef S. L. Nyakana, J. C. Fanning, and R. R. Boyer, “Quick reference guide for β titanium alloys in the 00s,” J. of Mater. Eng. and Performance, 14, No. 6, 799–811 (2005).CrossRef
4.
Zurück zum Zitat R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. of Mater. Eng. and Performance, 14, No. 6, 681–685 (2005).CrossRef R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. of Mater. Eng. and Performance, 14, No. 6, 681–685 (2005).CrossRef
5.
Zurück zum Zitat C. Leyens and M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications. Wiley–VCH, Germany (2003). C. Leyens and M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications. Wiley–VCH, Germany (2003).
7.
Zurück zum Zitat P. V. Panin, N. A. Nochovnaya, E. A. Lukina, and A. S. Kochetkov, “Effect of chemical composition variability on phase composition and structure of beta-solidifying TiAl-alloy in as cast condition,” Inorganic Materials: Applied Research, 10, No. 2, 316–321 (2019); DOI: https://doi.org/10.1134/S2075113319020333. P. V. Panin, N. A. Nochovnaya, E. A. Lukina, and A. S. Kochetkov, “Effect of chemical composition variability on phase composition and structure of beta-solidifying TiAl-alloy in as cast condition,” Inorganic Materials: Applied Research, 10, No. 2, 316–321 (2019); DOI: https://​doi.​org/​10.​1134/​S207511331902033​3.
8.
Zurück zum Zitat N. A. Nochovnaya and A. A. Shiryaev, “Effect of heat treatment regimes on the mechanical properties and structure of experimental composites of high-strength pseudo-β-titanium alloys,” Trudy VIAM: Elektron. Nauk.-Tekhn. Zh., No. 6, Art. 03 (2018); DOI: 10.18577/2307-6046-2018-0-6-22-29. N. A. Nochovnaya and A. A. Shiryaev, “Effect of heat treatment regimes on the mechanical properties and structure of experimental composites of high-strength pseudo-β-titanium alloys,” Trudy VIAM: Elektron. Nauk.-Tekhn. Zh., No. 6, Art. 03 (2018); DOI: 10.18577/2307-6046-2018-0-6-22-29.
9.
Zurück zum Zitat O. S. Kashapov, T. V. Pavlova, V. S. Kalashnikov, and A. R. Kondrat’eva, “Study of the effect of heat treatment regimes on structure and properties of test forgings of alloy VT41 with a fine grained structure,” Aviats. Mater. Tekhnol., No. 3-7 (2017); DOI: 10.18577/2071-9140-2017-0-3-3-7. O. S. Kashapov, T. V. Pavlova, V. S. Kalashnikov, and A. R. Kondrat’eva, “Study of the effect of heat treatment regimes on structure and properties of test forgings of alloy VT41 with a fine grained structure,” Aviats. Mater. Tekhnol., No. 3-7 (2017); DOI: 10.18577/2071-9140-2017-0-3-3-7.
10.
Zurück zum Zitat E. N. Kablov, O. S. Kashapov, P. N. Medvedev, and T. V. Pavlova, “Study of two-phase titanium alloy of the system Ti–Al–Sn–Zr–Si–β-stabilizer,” Aviats. Mater. Tekhnol., No. 1, 3037 (2020); DOI: 10.18577/2071-9140-2020-0-1-30-37. E. N. Kablov, O. S. Kashapov, P. N. Medvedev, and T. V. Pavlova, “Study of two-phase titanium alloy of the system Ti–Al–Sn–Zr–Si–β-stabilizer,” Aviats. Mater. Tekhnol., No. 1, 3037 (2020); DOI: 10.18577/2071-9140-2020-0-1-30-37.
11.
Zurück zum Zitat R. Santhosh, M. Geetha, and M. Nageswara Rao, “recent developments in heat treatment of beta titanium alloys for aerospace applications,” Trans. Indian Inst. Met., 70, No. 7, 1681–1688 (2017). R. Santhosh, M. Geetha, and M. Nageswara Rao, “recent developments in heat treatment of beta titanium alloys for aerospace applications,” Trans. Indian Inst. Met., 70, No. 7, 1681–1688 (2017).
12.
Zurück zum Zitat J. Cotton, R. Briggs, R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM, 67, No. 6. 1281–1303 (2015). J. Cotton, R. Briggs, R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM, 67, No. 6. 1281–1303 (2015).
13.
Zurück zum Zitat S. K. Jha and K. S. Ravichandran, “High-cycle fatigue resistance in beta-titanium alloys,” JOM, March, 30–35 (2000). S. K. Jha and K. S. Ravichandran, “High-cycle fatigue resistance in beta-titanium alloys,” JOM, March, 30–35 (2000).
14.
Zurück zum Zitat E. N. Kablov, N. A. Nochovnaya, A. A. Shiryaev, and E. A. Davydova, “Study f the structure and phase transformation in pseudo-β-titanium alloys and effect of cooling rate form the homogenizing temperature on alloy VT47 structure and properties. Part 1,” Trudy VIAM: Elektron. Nauk.-Tekhn. Zh., No. 6-7, Art. 01 (2020); DOI: 10.18577/2307-6046-2020-0-67-3-10. E. N. Kablov, N. A. Nochovnaya, A. A. Shiryaev, and E. A. Davydova, “Study f the structure and phase transformation in pseudo-β-titanium alloys and effect of cooling rate form the homogenizing temperature on alloy VT47 structure and properties. Part 1,” Trudy VIAM: Elektron. Nauk.-Tekhn. Zh., No. 6-7, Art. 01 (2020); DOI: 10.18577/2307-6046-2020-0-67-3-10.
15.
Zurück zum Zitat E. N. Kablov, “Marketing of materials science, aircraft construction in industry: present and future,” Direktor Maketingy Sbytu, No. 5-6, 40–44 (2017). E. N. Kablov, “Marketing of materials science, aircraft construction in industry: present and future,” Direktor Maketingy Sbytu, No. 5-6, 40–44 (2017).
16.
Zurück zum Zitat E. N. Kablov, N. A. Nochovnaya, Yu. A. Gribkov, and A. A. Shiryaev, “Development of high-strength titanium pseudo-β-titanium alloy and technology for preparing its semiproducts,” Voprosi Materialloved., No. 3 (87), 23–31 (2016). E. N. Kablov, N. A. Nochovnaya, Yu. A. Gribkov, and A. A. Shiryaev, “Development of high-strength titanium pseudo-β-titanium alloy and technology for preparing its semiproducts,” Voprosi Materialloved., No. 3 (87), 23–31 (2016).
17.
Zurück zum Zitat B. Martin, P. Samimi, and P. Collins, “Engineered, spatially varying isothermal holds: enabling combinatorial studies of temperature effects, as applied to metastable titanium alloy β-21S,” Metallography, Microstructure, and Analysis, 6, 216–220 (2017).CrossRef B. Martin, P. Samimi, and P. Collins, “Engineered, spatially varying isothermal holds: enabling combinatorial studies of temperature effects, as applied to metastable titanium alloy β-21S,” Metallography, Microstructure, and Analysis, 6, 216–220 (2017).CrossRef
18.
Zurück zum Zitat N. Clément, A. Lenain, and P. J. Jacques, “Mechanical property optimization via microstructural control of new metastable beta titanium alloys,” JOM, No. 1, 50–53 (2007).CrossRef N. Clément, A. Lenain, and P. J. Jacques, “Mechanical property optimization via microstructural control of new metastable beta titanium alloys,” JOM, No. 1, 50–53 (2007).CrossRef
19.
Zurück zum Zitat Kokuoz Basak, “The role of crystallographic relationships between alpha(α) and beta(β) phases on the elevated temperature isothermal phase transformation kinetics in Timetal LCB (Ti–6.5Mo–4.5Fe–1.5Al),” Clemson University Tiger Prints. All Theses (2008). Kokuoz Basak, “The role of crystallographic relationships between alpha(α) and beta(β) phases on the elevated temperature isothermal phase transformation kinetics in Timetal LCB (Ti–6.5Mo–4.5Fe–1.5Al),” Clemson University Tiger Prints. All Theses (2008).
20.
Zurück zum Zitat N. Miyano, T. Norimura, T. Inaba, and K. Ameyama, “Reasons for formation of triangular precipitates in Ti–15V–3Cr–3Sn–3Al titanium alloy,” Mater. Transactions, 47, No. 2, 341–347 (2006).CrossRef N. Miyano, T. Norimura, T. Inaba, and K. Ameyama, “Reasons for formation of triangular precipitates in Ti–15V–3Cr–3Sn–3Al titanium alloy,” Mater. Transactions, 47, No. 2, 341–347 (2006).CrossRef
21.
Zurück zum Zitat A. Dehghan-Manshadi and R. J. Dippenaar, “Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy,” Mater. Sci. and Eng. A, 528, 1833–1839 (2011).CrossRef A. Dehghan-Manshadi and R. J. Dippenaar, “Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy,” Mater. Sci. and Eng. A, 528, 1833–1839 (2011).CrossRef
22.
Zurück zum Zitat T. Inaba, K. Ameyama, and M. Tokizane, “Formation of (α + β) microduplex structure in a Ti–15V–3Cr–3Sn–3Al alloy,” ISIJ International, 31, No. 8, 792–798 (1991). T. Inaba, K. Ameyama, and M. Tokizane, “Formation of (α + β) microduplex structure in a Ti–15V–3Cr–3Sn–3Al alloy,” ISIJ International, 31, No. 8, 792–798 (1991).
23.
Zurück zum Zitat T. Suzuki, N. Niwa, K. Goto, M. Kobayashi, T. Moroyama, and H. Takatori, “Effect of aging on the mechanical properties of beta titanium alloys of Ti–13V–11Cr–3Al, Ti–15V–3Cr–3Sn–3Al and Ti–3Al–8V–6Cr–4Mo–4Zr,” Proc. of 8th World Conference on Titanium “Titanium 95: Science and technology”, The Institute of Materials, UK (1996). T. Suzuki, N. Niwa, K. Goto, M. Kobayashi, T. Moroyama, and H. Takatori, “Effect of aging on the mechanical properties of beta titanium alloys of Ti–13V–11Cr–3Al, Ti–15V–3Cr–3Sn–3Al and Ti–3Al–8V–6Cr–4Mo–4Zr,” Proc. of 8th World Conference on Titanium “Titanium 95: Science and technology”, The Institute of Materials, UK (1996).
24.
Zurück zum Zitat M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, and M. Niinomi, “Isothermal aging behavior of beta titanium–manganese alloys,” Materials Transactions, 50, No. 12, 2737–2743 (2009). M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, and M. Niinomi, “Isothermal aging behavior of beta titanium–manganese alloys,” Materials Transactions, 50, No. 12, 2737–2743 (2009).
25.
Zurück zum Zitat P. E. Markovskyi and M. Ikeda, “Influence of alloying elements on the aging of economically alloyed metastable titanium beta alloys,” Mater. Science, 49, No. 1, 85–92 (2013).CrossRef P. E. Markovskyi and M. Ikeda, “Influence of alloying elements on the aging of economically alloyed metastable titanium beta alloys,” Mater. Science, 49, No. 1, 85–92 (2013).CrossRef
Metadaten
Titel
Variability of Hardening Phase Morphology and Topology in Pseudo-β-Titanium Alloys Quenched for β-Structure
verfasst von
N. A. Nochovnaya
A. A. Shiryaev
A. N. Andrianov
E. A. Davydova
Publikationsdatum
30.09.2021
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2021
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01200-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.